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PREFACE

Metallic and polymer foams are widely used in modern industries,
e.g., the aircraft and the automotive industries, but also with other
application fields like biomechanics. The reason for this is some spe-
cific properties of these advanced materials. They are very light, but
the specific strength is comparable with the classical structural mate-
rials. If they are applied as sandwiches, the specific properties can be
even much better. In addition, they are able to absorb energy which
allows the use of these materials as crash elements.

In general, technological parameters in foam production are ad-
justed such that a uniform effective foam density is achieved through-
out the products. Some technologies, e.qg., injecting foam in a cavity
or filling a mold with foam by an expansion process, naturally result
. non-uniform distributions of the effective density. These inhomo-
geneities of the effective foam density may be exploited in structural
design, essentially treating the foam as a functionally graded material.

FGMs are composite materials where the composition or the mi-
crostructure is locally varied so that a certain variation of the lo-
cal material properties is achieved. Modern FGMs are constructed
for complex requirements, such as the heat shield of a rocket or im-
plants for humans. In these cases the analysis of the material and
the structures made of FGMs cannot be only limited to the mechan-
ical behavior. FGMs can be modeled as a porous material with non-
homogeneous distribution of porosity.

Engineering structures made of porous materials, especially metal
foams, have been used in different applications in the last decades.
A metal foam is a cellular structure consisting of a solid metal, for
example aluminium, steel, copper, etc., containing a large volume
fraction of gas-filled pores. There are two types of metal foams. One
s the closed-cell foam, while the second one is the open-cell foam.
The defining characteristics of metal foams are a very high porosity:
typically well over 80%, 90% and even 98% of the volume consists of
void spaces.

The course ”Cellular and Porous Materials: Modeling - Testing
- Application” was devoted to cellular and porous materials, and the
modeling and simulation of the material behavior, but also the struc-
tural analysis of structures made of foams, the testing and the appli-



cations. The main question was on which scale one has to model the
material. It is well-known that there are as a minimum three scales:
e micro-mechanical scale
The starting point in this case is a unit cell which can be open or
closed (open-cell foams, closed-cell foams). The description is
very fine (the unit cell is modeled by beams, plates or shells), but
the computational effort increases significantly if high accuracy
(e.g. in the case of plasticity) is required, and the identification

of the properties is still under question.
e meso-mechanical scale

Now the starting point is an agglomerate of cells (representative
volume), computational effort is quite expensive. In addition,

the periodicity assumption is under question.
e macro-mechanical scale

Now one has the size of structural elements or specimens. Using

standard numerical techniques the computational effort is as in

the case of classical structural materials. The disadvantage is

that ”smeared” properties should be introduced (that means the

constitutive behavior will be represented by phenomenological

equations) and local effects cannot be investigated.
During the 6 lectures

e Fracture Mechanics of Foams (Liviu Marsavina)
Finite Element Modeling of Foams (Thomas Dazxner)
Plasticity of Three-dimensional Foams (Andreas Ochsner)
Thin-walled Structures Made of Foams (Holm Altenbach)
Plasticity of Porous and Powder Metals (Sergei Alexzandrov)
Impact of Cellular Materials (Henry Tan)
the advantages and disadvantages of each approach were discussed.
The basics of the analysis of structures made of foams is the con-

tinuum mechanics. Briefly were presented the foundations. In ad-
dition, the introduction in the theory of elasticity and plasticity was
given. Special attention was paid to the yield criteria, to anisotropy
and to the different behavior in tension and compression. Many struc-
tural elements made of foams can be presented by beam, plate or shell
models. As an example, a plate theory based on the direct approach
was presented. One of the basic elements of this theory is the effective
property concept. Such a theory is suitable for the global analysis of
plates (deflections, frequencies, etc.).

Holm Altenbach and Andreas Ochsner



CONTENTS

Fracture Mechanics of Foams
by L. Marsavina.............oeouiiiie ...

1 Fundamentals of Fracture Mechanics
1.1 Introduction . . . . . . . . . . ... ... ... ..
1.2 Linear Elastic Fracture Mechanics . . . . . . . ..
1.3 Crack tip stress and displacement fields in aniso-
tropic materials . . . . . ... ... L.

2 Experimental Determination of Fracture Tough-

ness of Foam Materials

2.1 Tear Test for Flexible Cellular Materials . . . . .

2.2 Standard Test Methods for Plane-Strain Fracture
Toughness and Strain Energy Release Rate of Pla-
stic Materials . . . . . ... ... L.

2.3 Fracture Toughness Experimental Results

2.4 Impact Fracture Toughness . . . ... ... ...

3 Micromechanical Models for Foams Fracture
4 Concluding Remarks

Bibliography

Finite Element Modeling of Foams
by Th. Daxner........ ... .o,

1 Introduction
2 Homogenization and the Unit Cell Method

3 Micro-Mechanical Finite Element Models
of Cellular Materials
3.1 Introduction . . . . . . . . . ... ...

16
17

18
24
29

34

42

43

47

49

57



3.2 Open-Cell Foams . ... ... ... ........
3.3 Closed-Cell Foams . . . ... ... ........
3.4 Open-Cell Foams with Hollow Struts. . . . . . . .

4 Micro-Mechanical Models — Methods and Re-
sults
4.1 Elastic Properties . . . . . . .. .. ... ... ..
4.2 Yielding . . . ... ...
4.3 Buckling . . ... ... o0
4.4 Densification. . . . . . ... ...
4.5 Fracture . . . . . ...

5 Optimization of Foam Density Distribution
6 Summary

Bibliography

Plasticity of Three-dimensional Foams
by A OChSNer. .. ........cccoooeeeee .

1 Fundamentals of Continuum Mechanics
1.1 Stress Tensor and Decomposition . . . . . . . ..
1.2 Invariants . . . . . . . . . ... ... ... ...
1.3 Constitutive Equations . . . . . . ... ... ...
1.4 Linear Elastic Behaviour: Generalised Hooke’s
Law for Isotropic Materials . . . . . . . .. .. ..

2 Constitutive Relationships for Pressure
Sensitive Materials: Systematic Overview

3 Simple Cubic Cell Models based on Beams
and Shells for Open and Closed Cell Materials
3.1 Relative Density . . . . . .. ... ... ... ...
3.2 Geometrical Moment of Inertia . . . . . . .. ..
3.3 Young’s Modulus . . . ... ... ... ......
3.4 Shear Modulus and Poisson’s Ratio . . . . .. ..

73
74
75
80
91
93

96

98

98

107
107
109
112

113

119



3.5 Yield Stress . . . . . ... .. 140

4 Procedures to Determine the Influence of the
Hydrostatic Stress on the Yield Behaviour 141

5 Implementation of New Constitutive Equations

into Commercial Finite Element Codes 146
5.1 Omne-Dimensional Drucker-Prager Yield Condition 146
5.2 Integration of the Constitutive Equations . . . . . 148
5.3 Mathematical Derivation of the Fully Implicit
Backward Euler Algorithm . . . . . ... ... .. 152
5.4 Example Problem: Return Mapping for Ideal Plas-
ticity and Linear Hardening . . . . . . . .. ... 158
Bibliography 164

Thin-walled Structures Made of Foams

by H. Altenbach and V.A. Eremeyev..................... 167
1 Introduction 168
1.1 Plates as Structural Elements . . . .. ... ... 168
1.2 Foams as a Material for Structural Elements . . . 169
2 Direct Two-dimensional Plate Theory 171
2.1 Classical Approaches in the Plate Theory . . . . . 171
2.2 Governing Equations . . . . ... ... 173
2.3 Material-independent Equations . . . . . .. . .. 174
2.4 Two-dimensional Constitutive Equations . . . . . 175
2.5 Basic Equations in Cartesian Coordinates . . . . 176
3 Stiffness Identification 179
3.1 Orthotropic Material Behavior . . . . . . ... .. 180
3.2 Classical Stiffness Values . . . . .. .. ... ... 181
3.3 Non-classical Stiffness Values. . . . . . . ... .. 183

3.4 Special Case — Isotropic Behavior . . . . . .. .. 185



4 Examples of Effective Stiffness Properties Esti-

mates 186
4.1 Homogeneous Plate . . . . . ... ... ... ... 186
4.2  Classical Sandwich Plate in Reissner’s Sense . . . 187
4.3 Functionally Graded Materials and Foams . . . . 188
4.4 On the Plates Made of Nanofoams . . . .. . .. 193
5 Symmetric Orthotropic Plate - Static Case 196
5.1 Bending Problem - One-dimensional Case . . . . 198
5.2 Bending Problem - Two-dimensional Case . . . . 198
5.3 Bending of an Isotropic Plate . . . .. ... ... 199
5.4 Bending of an Elastic Plate Made of FGM (Sym-
metric Case) . . . . .. ..o L 200

6 Dynamics of Plates Made of an Elastic Foam 201
6.1 Equations of Motion for a Symmetric Isotropic

Plate . . . . . . .. ..o 201
6.2 Free Oscillations and Dispersion curves of a Rect-
angular Plate . . . . .. ... ... ... ... 203
7 Plate Made of a Linear Viscoelastic Material 209
7.1 Constitutive Equations . . . . . . ... ... ... 209
7.2 Effective Properties . . . . . ... ... ... ... 210
7.3 Bounds for the Eigen-values . . . . .. .. .. .. 214
7.4 Quasi-static Behavior of a Symmetric Orthotropic
Plate . . . . . . ... 215
7.5 Examples of Effective Stiffness Relaxation
Functions . . . .. ... ... 217
7.6 Bending of a Viscoelastic Plate . . . . .. .. .. 222
8 Plate Theory Deduced from the Cosserat Con-
tinuum 226
8.1 Two-dimensional Governing Equations . . . . . . 226
8.2  Reduction of theThree-dimensional Micropolar
Equations . . . ... ... o 228
9 Summary 232

Bibliography 234



Plasticity of Porous and Powder Metals

by S. Alexandov ...... ... ... .. .

1 Introduction

2 Fundamentals of the Theory of Plasticity

2.1 Rigid Perfectly/Plastic Solids . . . .. ... ..
2.2 Rigid Plastic Hardening Solids . . . . . . . . ..
2.3 Rigid Viscoplastic Solids . . . . ... ... ...

2.4  Maximum Friction Law and Singular Velocity

Fields (Rigid Perfectly/Plastic Material) . . . .

2.5 Maximum Friction Law and Other Models of

Pressure-independent Plasticity . . . . . . . ..

3 Plasticity Theory for Porous and Powder Metals

Based on the Associated Flow Rule

3.1 Preliminaries . . . . . . . ... ... ... ...
3.2 Yield Criteria and the Associated Flow Rule for

Porous and Powder Materials . . . . . ... ..
3.3 Additional Remarks on the Yield Criteria . . . .
3.4 Simple Analytic Example . . . . . . ... .. ..

4 Plasticity Theory for Porous and Powder Metals

Based on Non-associated Flow Rules

4.1 Stress Equations . . . ... ... L.
4.2 Kinematic Theories . . . . . . .. . . ... ...
4.3 The Coaxial Model . . . . . ... .. ... ...
4.4 The Double-shearing Model . . . . . . .. ...
4.5 The Double-slip and Rotation Model . . . . . .

5 Qualitative Behavior of Plastic Solutions for

Porous and Powder Metals in the Vicinity of

Frictional Interfaces

5.1 Preliminaries . . . . . . . . .. .. ... ...
5.2 Statement of the Problem . . . . . .. .. ...



5.3 Solution for Stresses . . . . . . . . ... ... .. 289

5.4 Solutions for Velocities . . . . . .. .. ... ... 290
5.5 Frictional Boundary Condition . . . . . .. . . .. 292
5.6 Solution for Pressure-independent Plasticity . . . 299
5.7 Singularity in Velocity Fields. . . . .. .. .. .. 300
6 Applications 302
Bibliography 305

Impact of Cellular Materials

by H. Tan and S. Qu.........c oo i, 309
1 Introduction 309
2 Wave Propagation in a Cellular Rod 311
3 Rigid Object Strikes on a Cellular Rod of Fixed
End 316
3.1 Basic Assumptions . . . . ... ... .. ... .. 316
3.2 Shock Wave Analysis . . . . ... ... ... ... 317

4 Rigid Object Strikes on a Free Cellular Rod 325
5 Concluding Remarks 333

Bibliography 333



Fracture Mechanics of Cellular Solids

Liviu Marsavina"
“ POLITEHNICA University of Timisoara, Romania

Abstract Most of foam materials crush in compression, while in
tension fail by propagating of single cracks. Rigid polymer foams
have a linear-elastic behavior in tension up to the brittle fracture, so
they can be treated using Linear Elastic Fracture Mechanics. This
chapter presents the Linear Elastic Fracture Mechanics parameters
and criteria with application for foam materials. Methods for ex-
perimental determination for tear strength and fracture toughness
are presented. The obtained experimental results are discussed and
compared with other published data. Main micromechanical mod-
els for predicting fracture toughness of cellular materials are also
discussed.

1 Fundamentals of Fracture Mechanics

1.1 Introduction

Most of the structures contain small flaws whose size and distribution
are dependent on the material and its processing. These flaws can extend
rapidly at applied load levels which are nominally well within the linear elas-
tic part of load-displacement response of the structure. Several structural
failures can be associated with the fracture of one or more of its components.
When such events occur, they are mostly unexpected, sudden, and unfortu-
nate, and it is natural for us to focus attention on minimizing the undesired
consequences when designing and analyzing modern-day structures. The
study of crack behavior, prevention and analysis of fracture of materials is
known as fracture mechanics. The goal of fracture mechanics is to predict
the critical loads that will cause catastrophic failure in a structure or com-
ponent. The influence of pre-existing cracks on the strength of components
needs to be understood and quantified. The initiation and growth of crack
like defects during service (fatigue, creep) needs to be understood and quan-
tified. A defect tolerant design and maintenance philosophy is necessary to
be developed.

The most famous failure produced by foam fracture is the Space Shuttle
Columbia disaster occurred on February 1, 2003, when disintegrated over



2 L. Marsavina

Palestine, Texas during re-entry into the Earth’s atmosphere, with the loss
of all seven crew members. The Columbia accident was a result of dam-
age sustained during launch when a piece of foam insulation with the size
of a small briefcase broke off the Space Shuttle external tank under the
aerodynamic forces of launch. The debris struck the leading edge of the
left wing, damaging the Shuttle’s thermal protection system (TPS), Fig. 1,
which protects it from heat generated with the atmosphere during re-entry.
While Columbia was still in orbit, some engineers suspected damage, but

Shower of particles
below (-Z) of LH wing
after debris struck .

wing

Figure 1. The foam from the fuel tank hit the left wing of the shuttle
KSC-03PD-0250: http://mediaarchive.ksc.nasa.gov/

NASA managers limited the investigation, on the grounds that little could
be done even if problems were found. NASA engineers reviewed the launch
tapes to reveal a 500 mm piece of hardened insulation foam breaking off the
main fuel tank and hitting the shuttle’s left wing. When the shuttle broke
up during reentry, no one could ascertain if it was because of the damaged
wing hit by the foam.
The reason to apply fracture mechanics for cellular materials can be
summarized as follows:
e The Columbia disaster is an example of catastrophic failure caused by
fracture of foam,
e The rigid foams have a brittle fracture in tension, and the failure is
produced by single crack propagation,
e LEFM approaches describe the fracture of rigid polyurethane foams
and expanded polystyrene foams, while tearing occurs for semi-rigid
low-densities polyethylene, or flexible polyurethane foams.
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1.2 Linear Elastic Fracture Mechanics

Many textbooks present the principle of linear elastic fracture mechanics
(LEFM) (Broek, 1986; Ewalds and Wanhill, 1989; Anderson, 1995; Shukla,
2005). Here only a review of the main fracture criteria for LEFM will be
presented.

Griffith Energy. Griffith (1921) proposed an energy balance approach
to study the fracture phenomenon in cracked bodies. He proposed that
the reduction in strain energy of a body when the crack propagates could
be equated to the increase in surface energy due to the increase in the
surface area. The Griffith theory assumed that the fracture strength was
limited by the existence of initial cracks and that brittle materials contain
elliptical microcracks, which introduce high stress concentrations near their
tips. He developed a relationship between crack length (a), surface energy
connected with traction-free crack surfaces (27.), Young’s modulus E and
applied stress o, which is given by

rva =\ 2 ()

According with Eq. (1), which is valid for plane stress, the fracture occurs
when the product o+/a reaches a particular value depending on material
constants E and 7.

Later Trwin (1957) introduced the energy release rate G defined as the
rate of change in potential energy with crack area for a linear elastic mate-
rial. For an infinite plate (Fig. 2), with a crack of length 2a, loaded with a
remote tensile stress o the energy release rate is:

g = 7 - for plane stress (2)
2
G = mTEa(l ) - for plane strain (3)

Irwin (1957) proposed a fracture criteria based on the energy release rate
which states that the fracture occurs when the energy release rate reaches
a critical value G., known also as fracture toughness

The critical combination of stress and crack length for fracture occurrence
can be expressed in the form

7rof2 Qe

gc = I5

(5)
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Hilartdbed dl ™

2a<<b

Figure 2. Crack of length 2a in an infinite plate remote loaded with tensile
stress o

where oy represents the fracture stress and a. is the critical crack length.
Eq. (1) can also be expressed in the form

2
mea = 27 - for plane stress (6)
2
7T%&(1 ~v?) = 2y - for plane strain (7)

where the left hand side represents the energy release rate G, while the right
hand side represents the energy needed for incremental crack growth. In
addition, it is a measure of resistance to crack advance. So, the condition for
unstable crack growth occurs when the energy available for crack extension
(crack driving force) equals the resistance of the material to crack advance

G=R (8)

and is graphically represented in Fig. 3.

Orowan (1955) extended the Griffith criterion valid for brittle materials
to materials with limited plastic deformations at the crack tip. He postu-
lated that the resistance to crack growth in engineering materials is equal
to the sum of elastic surface energy v, and the plastic dissipation or plastic
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Material type

Applied loads
Working
conditions:
Crack length « Temperature
« Radiations
« Corrosion
Energy Resistance * Hydrogen
Geometry of release | == | of material

cracked body rate

Loading speed

Variations of load
intime

Degradation
mechanisms
Figure 3. Unstable crack growth condition
work 7y, accompanying crack extension
no’a
7 = 200 +%) 9)

Asymptotic stress field at the crack tip. In general, consideration of
three different loading symmetries is sufficient to decompose any arbitrary
loading with respect to a crack, Fig. 4. Mode I corresponds to opening
mode, Mode II to in-plane shear and Mode III to out - of - plane shear.
In most engineering applications the brittle fracture of structures occurs in
Mode 1.

According with linear elastic fracture mechanics approach the stress field
near the crack tip depends on the crack length a, applied stress ¢ and a
coefficient 8 which accounts for the geometry of cracked body (finite size,
geometric features) and type of loading (tensile, bending, torsion). These
are expressed by the Stress Intensity Factor (SIF)

KI :60'\/% (10)

and represents the strength of the stress singularity near the crack tip.
The nature of the stress field near the crack tip in a linearly elastic solid
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4

Mode I: Tensile opening Mode lI: In-plane shear  Mode llI: Out of plane shear

Figure 4. Types of loadings

was established through the efforts of Westergaard (1939); Irwin (1957);
Williams (1957) and many other investigators.

For a homogeneous, isotropic, and linearly elastic solid, the structure of
the solutions to the equations of equilibrium subjected to traction-free crack
surfaces can easily be determined for each of the three modes of loading.
This stress field in the vicinity of the crack, cf. Fig. 5 for general mixed
mode loading can be written in the following form

¥ oy
l Ty
oy Ty
Txy > ] Ox
r TJ"?T
0 oy

—
_E_afl(/() X

Figure 5. Stress components near crack tip

1
Norr (K1 gj(e) + K11 };(6’) + K ZIJH(H)] + hgher order terms,
(11)

where r, 0 are the polar coordinates defining the position of an element in
front of a crack tip, cf. Fig. 5, K, K11 and Kiyp are the Stress Intensity
Factors corresponding to the three modes of loading, and Z-Ij, ZIJI, ZIJH are
non-dimensional functions indicated in Table 1. The stress field described
by Eq. (11) shows that at the crack tip the stresses are theoretically infinite.

Oij (T‘, 9) =
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Table 1. Non-dimensional functions
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K-dominant zone

Figure 6. Validity of linear elastic stress field

Most engineering materials when the actual stress reaches the yield stress
(0ys) and have a finite strength. The damaged zone is known as plastic
zone for metals and fracture process zone for ceramics and some composite
materials. The size of the plastic zone is denoted by r, and represents the
radius corresponding to the yield stress, cf. Fig. 6. The linear elastic stress
field is valid only in K-dominant zone, for example when r, is less than
1/25% of the crack length a.

The crack tip displacement fields for linear elastic isotropic materials are

e for Mode I

e for Mode II

e for Mode III

K 0
h Lcos— I€71+281H2Q
2u '\ 27 2 2

(12)
ﬁ,/ising H+1—2COSZQ
2u \ 27 2 2
K
—1 Lsing n+1+20052§
21\ 27 2 2
(13)
—ﬁ LCOSQ ,%—1—2511&2€
2u '\ 27 2 2
KIII r 0
w = ——4/=—sin—
w22 (14)
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where p is the shear modulus and x = 3 — 4v for plane strain and x =
(3 —v)/(1 + v) for plane stress.

The Stress Intensity Factors are very important because under conditions
of small-scale yielding, all crack front fields are dominated by the stress
intensity factor. Therefore, all crack behavior like stability (will the crack
tip propagate?), trajectory (in which direction will grow), and rate (how
fast will grow) are controlled by the stress intensity factor and, maybe by
higher order terms.

The Stress Intensity Factors could be determined analytically using com-
plex stress functions, weight functions, Green’s functions, numerically with
Finite Element Method or Boundary Element Method or experimentally by
strain gauges, photoelastic stress analysis, thermoelastic stress analysis.

The fracture criterion based on the SIF states that unstable fracture
occurs when the stress intensity factor reaches a critical value Kj., also
called fracture toughness. Ki. represents the inherent ability of a material
to withstand a given stress field intensity at the tip of a crack and to resist to
progressive tensile crack extension. Thus a crack will propagate (under pure
mode I), whenever the stress intensity factor K (which characterizes the
strength of the singularity for a given problem) reaches a material constant
Ki.. Hence, under the assumptions of linear elastic fracture mechanics
(LEFM), at the point of incipient crack growth

KI = ﬁd\/ﬁ = KIC (15)

This fracture criteria is the most commonly used in LEFM because a lot
SIF’s solutions are available for different cracked bodies and the fracture
toughness of materials is a common mechanical property. The measured
value of K. is high for small specimen thicknesses and reaches a nearly
constant lower plateau at large specimen thicknesses; this value of the crit-
ical stress intensity factor, labeled K., represents the plane strain fracture
toughness, cf. Fig. 7.

Generally, determination of fracture toughness is carried on experimen-
tally using standard test procedures, and will be presented in Section 2. Mi-
cromechanical models were developed based on analytical solutions (Section
3) or on finite element methods in order to predict the fracture toughness
of cellular materials.

The chart of the fracture toughness versus Young modulus was plotted
by Ashby, Fig. 8. The range of fracture toughness is large: from less
than 0.01 to over 100 MPa m®?. At the lower end of this range are brittle
materials, which, when loaded, remain elastic until they fracture. For these
materials the linear-elastic fracture mechanics works well, and the fracture
toughness itself is a well-defined property. At the upper end lie the hi-tough
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Plane | Transition Plane strain

Kic

v
i
NIQ
5 |8
—

25

Figure 7. Variation of fracture toughness with normalized specimen thick-
ness

e f“‘lcf/!

4Fraeturatoughnss-ﬂndulm| .»"- W

100

-
=]

-

Fracture toughness, ;¢ (MPa.m'?)

o
-

0.01 : = e
0.001 0.01 0.1 1 10 100 1000
Young's modulus, E (GPa)

Figure 8. Fracture toughness K., plotted against Young’s modulus, F,
after Ashby (2005)
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materials, all of which show substantial plasticity before they break. For
these materials the Elasto-Plastic Fracture Mechanics should be applied.
Cellular materials like rigid polymer foams are placed on the bottom left
part in this chart, showing low fracture toughness and low Young’s modulus.
The lines corresponding to different values of (K1.)?/E and constant K./ E,
could be used in design against fracture. The shaded band corresponding to
the lower limit of K. shows the "necessary condition” for fracture. Fracture
can, in fact, occur below this limit under conditions of corrosion, or cyclic
loading.

Comparing Eqgs (2) and (8) it can be seen the correlation between energy
release rate and stress intensity factor:

KQ
G = fl - for plane stress (16)
K2
G = (1- 1/2)?1 - for plane strain (17)

Design based on LEFM. Assessment of integrity and reliability of struc-
tures requires a detailed analysis of the stress and deformation that they
experience. Farly designs were based on strength of materials criteria which
states that o = o1, (Fig. 9), where o, is the limit stress, representing the
ratio between yield or tensile strength and a safety factor. The Fracture

APPLIED STRESS < YIELD or TENSILE
STRENGTH

Figure 9. Classical Strength of Materials design criteria

Mechanics approach takes into account the flaw size, cf. Eq. (15).

Thus, for the design of a cracked, or potentially cracked, structure, the
engineer would have to decide what design variables can be selected, as only,
two of these variables can be fixed, and the third must be determined. The
design variables shown in Fig. 10 are:

Material properties: fracture toughness Ki,
Design stress level: applied stress o,
Flaw size: crack length a.

In assessing the safety of a cracked body, it is essential that the crack
length a is properly known. In most cases it is not. Thus assumptions
must be made for its value, and those assumptions are dependent upon the
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APPLIED STRESS

FLAW SIZE ) FRACTURE
TOUGHNESS

Figure 10. Fracture Mechanics design criteria

crack detection methodology adopted. The presence of a crack, equal to the
smallest one that can be detected, must be assumed.

1.3 Crack tip stress and displacement fields in anisotropic ma-
terials

In many cases the behavior of the cellular materials is anisotropic. Usu-
ally, the in-plane properties differ from those in out-of-plane direction for
manufactured foams. Natural cellular solids are more anisotropic (Gibson
and Ashby, 1997). The generalized Hooke’s Law can be expressed for an
anisotropic material in the form

€1 a1 @i2 ai3 G4 ais  aie o1
€2 Ga21 @G22 A23 Q24 A25 (26 02
€3 _ | @31 as2 asz az4 azs 436 03 (18)
€4 A41 Q42 A43 Q44 Q45 0A46 04
€5 as1  As2 A53 (A54 As55 (56 05
€6 a1 Ae2 A3 A4 A5  G66 06

For this general case we have 36 independent constants a;; However, tak-
ing into account the symmetry a;; = aj; this reduces to 21 independent
constants. If the material has one plane of symmetry, it reduces to 13 in-
dependent constants. For the case of an orthogonal anisotropic material,
known also orthotropic, there are three orthogonal planes of elastic symme-
try and a1 = ag¢ = asg = ags = 0, resulting in 9 independent constants

€1 a1 a2 a3 O 0 0 o1
€2 az1 a2 a3 0 0 0 02
e3 | _ | @ az azs 0 0 0 o3 (19)
4 0 0 0 a4 0 0 g4
1953 0 0 0 0 ass 0 g5

€6 0 0 0 0 0 age 06
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Considering the engineering constants Young’s moduluae E;, F», E3, Pois-
son’s ratios vqs9, Va1, V13, V31, V23, V32 and shear moduluae Giao, Gi3, Gag
for an orthotropic material, Eq. (19) can be expressed

1
€1 = — (01— 11202 — v1303)
By
1
g2 = —(02 — 12101 — 1/2303)
Es
1
€3 = E—(U3—V3101—V3202)
3 (20)
~ g12
12 = =
G2
~ 013
13 = =
Gi3
~ 023
23 = =
Goas

allowing to identify the coefficients a;;

1 1 1
a11 —,a22 = 4 ,0433 =
Ey’ Ey’ Es’
a a Vi2 V21 a a Va3 V32
12 =021 = =/ = ——/,023 =432 = ——/— = ——/,
By E, Es Es (21)
Qi = oy — V31 U3
13 =031 = ——/ = ——/—+
E3 Ey’
1 1 1
(44 = F—,055 = 5,066 = ~
Gi2 G G2

For a transversally isotropic material, Fig. 11 like some man-made foams
or corks, we have only 5 independent elastic constants

€1 ai; G2  a13 0 0 0 o1

) a21  G22 Q23 0 0 0 (op)

€3 | _ | a3 a3 ass 0 0 0 03 (22)
Eq 0 0 0 2(&11 - a12) 0 0 g4 ’

€5 0 0 0 0 a4 0 05

€6 0 0 0 0 0 44 g6
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Figure 11. Transversally isotropic material

Table 2. Number of independent and nonzero coefficients

‘ Material Type ‘ Independent coefficients | Nonzero coefficients ‘
General Anisotropic 21 36
Orthotropic 9 12
Transversally isotropic 5 12
Isotropic 2 12

which in terms of engineering constants become

1 v v
€1 = EO’1*EO'2*EO'3
1 v v
13 = EO’Q*EOj*EOg
1 v
&2 = gt (23)
. 2(1 +I/)O’12
Y2 = B
013
WS
023
Y23 = F

where F and v represents the elastic properties in the plane of isotropy and
E’, G' and v/ elastic properties for the plane normal to the plane of isotropy.
Table 2 presents the number of coefficients for different types of materi-
als.
For a cracked homogeneous anisotropic material loaded in mixed mode
loading (I and II) the stress field can be expressed using the stress intensity
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factors in the form (Sih et al., 1965)

S Kiq §R_ 5182 82
2 _81 — 82 \/cos9+ S9sin 6 \/00594— s1sind
_ K R [ ( )
V2rr _31—52 \/0059—1—3251](10 \/COS9+8181D6‘
=" )
Oyy = R
27r _81—82 \/C089+5281n9 \/CO§9+5181119 (24)
_ K R [ ( )
V2rr | $1— s2 \/cose—i—szsme \/0059+3151n6
Ky, 5 [ s1s2 ( )
Opy =
Y V2 _31—52 \/cose—i-szsme \/COSH—i-slsln@
_ K o [ B
2rr [ 81— 82 \/c0§9+5281n9 \/cost9+slslnt9 |’

where R represents the real part, s; and s, are roots of he general equation
(Saouma, 1997)

a1154 — 2&1633 + (2&12 + a66)32 — 20968 + a2 =0 (25)

in the form s; = o +18;, for j = 1,2, a;; are the components of the
compliant matrix.

The most important observation is that for the anisotropic case like in
the isotropic case the stress field has a singularity of order r~%-°. Regarding
the stress intensity factors values for anisotropic materials differ from those
for isotropic materials (Murakami, 1987).

The displacement field for mode I loading conditions can be expresses in
the form

/2 1
= Ki, T%{ |:81p2\/C080+82 sin @ —sap1\/cos O + so sine}} ,
T

S1 — S2
2r 1 - ;
v1 = Kig\/ —R [slqu/cose + 89 8in 0 —s5¢14/cos 6 + sosin 9} ,
m S1 — S2
w1 = 0
(26)
with
2 a22 .
pj = ansj + a2 — aies;, G = @128 + = = a6, j=12 (27)

J
For orthotropic materials the characteristic equation becomes

E E
4 1 2 1
—9 +==0 28
s <G12 Vl?) s FEs (28)
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A study of the solutions for the characteristic equation is presented by
Saouma (1997).

2 Experimental Determination of Fracture Toughness
of Foam Materials

It is well known that the foam crushes in compression, Fig. 12 (left), while
in tension fails by propagating of single crack, Fig. 12 (right). Most of the

Figure 12. Mechanisms of foam damage in compression and bending

rigid polymer foams have a linear - elastic behavior in tension up to fracture,
and a brittle fracture, so they can be treated using fracture criteria’s of
Linear Elastic Fracture Mechanics (LEFM). The case of metallic foams with
elasto-plastic fracture behavior will not be treated here, but was extensively
investigated during the last 10 years by McCullough et al. (1999); Ashby
et al. (2000); Olurin et al. (2000); Andrews and Gibson (2001); Fleck et al.
(2001); Motz and Pippan (2001); Motz (2002); Degischer and Kriszt (2002);
Onck et al. (2005).

Methods for testing of polymeric foams are reviewed by Landrock (1995);
Brown (1999, 2002); Ward and Sweeney (2004). Different procedures for
determination of fracture toughness for cellular materials were developed
for flexible and rigid foams.

2.1 Tear Test for Flexible Cellular Materials

This test method is standardized by ASTM D 3574-03: Standard Test
Methods for Flexible Cellular Materials-Slab, Bonded, and Molded Ure-
thane Foams (Test F), ASTM D 3575-00: Standard Test Methods for Flex-
ible Cellular Materials Made from Olefin Polymers (Test G), and BS EN
ISO 8067-89: Flexible Cellular Polymeric Materials - Determination of Tear
Strength.
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Scope. The test method covers determination of the tear propagation
resistance of foam, by measuring the tear resistance under the conditions of
this particular test. The tear strength represents the force needed to rip a
foam specimen.

Apparatus. The tear resistance should be measured on a power-driven
apparatus which will indicate the force at which fracture of the specimen
takes place. An automatic machine can be used which draws the actual
curve, or, a style or scale can be used having an indicator that remains at
the point of maximum force after fracture.

Test Specimens. The test specimens shall be a block shape free of skin,
voids, and densification lines, as shown in Fig. 13. They may be cut on

)
A 4

N
v

Figure 13. Tear strength specimens

a saw or die cut from sheet material so that the sides are parallel and
perpendicular to each other. The block dimensions should be T' = W =
25 mm, L = 125 mm (after EN ISO 8067-89). A nominal ¢ = 50 mm cut
shall be produced, with a razor blade or knife, in one side as shown in Fig.
13. The tests should be performed at least 72 hours after manufacture at
room temperature. At least, three specimens per sample must be tested.
The values reported are be the mean of those tested.

Procedure. The specimen legs are clamped and pulled apart with a speed
of 50 to 500 mm/min. After the fracture of the specimen, or after at least a
50-mm length is torn, record the maximum force in Newtons and note also
the thickness of the specimen
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Calculation. Calculate the tear strength from the maximum force regis-
tered on the testing machine and the average thickness of the specimen T,

as follows
F
R==—2210° 29

w7, (29)
where R is the tear strength in [N/m], Fhax - maximum force, [N], T -
thickness, [mm]. Some Tear Strength results together with other mechanical
characteristics of flexible ethylene-vinyl acetate (EVA) foam are presented
in Table 3 from www.rueylung.com.tw/products/EVA Foam.

2.2 Standard Test Methods for Plane-Strain Fracture Toughness
and Strain Energy Release Rate of Plastic Materials

The test procedure for determining the plane strain fracture toughness
of plastic materials is standardized by the American Society for Testing and
Materials, ASTM D5045-99 which is based on ASTM E399-97 Test Method
for Plane-Strain Fracture Toughness of Metallic Materials, but includes spe-
cific consideration for plastic materials.

Scope. The test method is designed to determine the toughness of plastics
in terms of the critical stress intensity factor, Ki., and the energy per unit
area of crack surface or critical strain energy release rate, Gi., at fracture
initiation. Two types of specimens are proposed: Single Edge Notch Bend-
ing (SENB) specimen and Compact Tension (CT) specimen. Linear elastic
behavior under plane strain conditions is assumed, certain restrictions on
linearity and specimen dimensions are considered in order to validate the
experimental results

Apparatus. A constant displacement rate device shall be used such as
an electromechanical, screw-driven machine, or a closed loop, feedback-
controlled servo-hydraulic load frame. For SENB, a rig with either station-
ary or moving rollers of sufficiently large diameter to avoid excessive plastic
indentation is required. A suitable arrangement for loading the SENB spec-
imen is presented in Fig. 14 (left). A loading clevis suitable for loading
compact tension specimens is shown in Fig. 14 (right). Loading is pro-
duced through pins on the specimen holes (Fig. 14 (right)). An accurate
displacement measurement must be obtained to assure accuracy of the Gy,
value.

For either SENB or CT specimen configurations, the displacement mea-
surement can be performed using the machine’s position transducer. The
load-displacement data must be corrected for system compliance, loading-
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Table 3. Mechanical characteristics of EVA foam materials
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Figure 14. Arrangement of loadings: SENB specimen (left), CT specimen
(right)

pin penetration and sample compression by performing a calibration of the
testing system.

If an internal displacement transducer is not available, or has insufficient
precision, then an externally applied displacement-measuring device may be
used as illustrated in Fig. 14 (right) for the SENB configuration. For CT
specimens, a clip gage can be mounted across the loading pins. For both
the SENB and CT specimens, the displacement should be taken at the load
point.

Test Specimens. SENB and CT geometries are recommended over other
configurations because these have predominantly bending stress states which
allow smaller specimen sizes to achieve plane strain conditions. If the ma-
terial is supplied in the form of a sheet, the specimen thickness, B, should
be identical with the sheet thickness. The criteria require that B must be
sufficient to ensure plane strain and that (W — a) be sufficient to avoid ex-
cessive plasticity in the ligament. If (W — a) is too small and non-linearity
in loading occurs, then increasing the W/ B ratio to a maximum of 4 can be
attempted for SENB specimens. Initially, prepare a sharp notch by machin-
ing. Subsequently, initiate a natural crack by inserting a fresh razor blade
and tapping. If a natural crack cannot be successfully initiated by tapping,
a sufficiently sharp crack can alternatively be generated by sliding or saw-
ing a new razor blade across the notch root. The dimensions of standard
specimens are shown in Fig. 15. At least three specimens for each material
condition should be tested.
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Figure 15. Specimens configuration for D 5045-99 test: SENB specimen

(up), CT specimen (down)
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Procedure. Since plastics are viscoelastic materials, it is necessary to
specify both the temperature and time scale under which the result was
obtained. It is recommended that tests to be performed at a temperature
of 23°C, and a crosshead rate of 10 mm/min.

The load versus loading-point displacement curve is recorded during test.
In the ideal case this is a linear diagram with an abrupt drop of load to zero
at the instant of crack growth initiation. In some cases this occurs and Kq
can be found from the maximum load.

The determination of Gi. requires an accurate integration of the load
versus loading point displacement curve, which necessitates an accurate
displacement determination using a displacement transducer.

Calculation and results interpretation. Calculation value of stress
intensity factors K¢ is obtained based on force-displacement curve, cf. Fig.
16. First, draw a straight line (AB) to determine the initial compliance

G ! Compliance
’ C=tan 86
’ 1.05C=tan¢

Figure 16. Typical load - displacement curve

C' = tan 6, which represents the slope of line (AB). Draw a second line (AB’)
with the compliance 5% greater than that of line (AB). If the maximum
load that the specimen was able to sustain, Py, falls within lines (AB)
and (AB’), use Puax to calculate Kq. If Pyax falls outside line (AB) and
line (AB’), then use the intersection of line (AB’) and the load curve as Pq.
Furthermore, if Pax/Pq < 1.1 use Pq in the calculation of Kq. However,
if Ppax/Pq > 1.1 the test is invalid.



