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Preface

Extended defects in semiconductors are usually considered detrimental. In the
early days of electronic devices, only polycrystalline material was available. In
fact, germanium was the first material that could be grown dislocation free,
the reason being its relatively low melting point. With the improvement of
crystal growth, dislocation-free wafers became available and are nowadays the
standard in the case of 200 and 300 mm diameter silicon substrates. In the
future, there may even be a switch over to a 450 mm wafer size. In the case of
Ge it is already feasible to grow 300 mm dislocation-free wafers. On the other
hand, low-cost, solar-grade silicon material is characterized by the presence of
a large density of extended defects: grain boundaries, twins, dislocations and
stacking faults, which determine to a large extent its electrical performance
and solar energy conversion efficiency. Other applications, like detectors for
nuclear radiation spectroscopy, require a density of dislocations in the range
of a few hundreds to thousands for a successful, high-resolution operation. It
implies that depending on the application, extended defects may be present
and, therefore, their electrical and mechanical effects should be studied and
well-characterized. Giving the current interest in renewable energy, and in
particular, solar energy, it comes as no surprise that the study of extended
defects in semiconductors is experiencing a second youth, with a great deal of
research activities going on world-wide, involving a growing number of young
scientists.

At the moment, the main application of Ge wafers is space solar cells,
requiring high-quality defect-free material. Ge can be a potential block-buster,
as channel material for sub-22 nm CMOS. However, transistors will be made
only on thin Ge layers fabricated on a silicon handle or carrier wafer. Whatever
the fabrication technique of choice, i.e., epitaxial deposition, Ge condensation
or smart-cut GeOI, extended defects may readily be formed, so that the under-
standing of the formation and the control of extended defects is of crucial
importance in state-of-the-art Ge materials. The main reason for the forma-
tion of misfit and threading dislocations is the lattice mismatch between the
substrate - usually silicon - and the epitaxial layer, which amounts to about
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4.1% at room temperature for pure Ge. It implies that below a certain critical
thickness, which is about 1 nm for Ge, the layer can be deposited pseudomor-
phically, i.e., defect free, while above this thickness, plastic relaxation at the
epitaxial interface readily occurs. Depending on the growth conditions, misfit
dislocations are formed with threading arms reaching through the layer to the
surface. It is in the first instance that these threadings can be harmful for
device operation and should be controlled to acceptable levels, either during
growth or by a post-deposition annealing treatment.

On the other hand, extended defects may be created also during device
processing, as it is known that certain steps like ion implantation, dry etch-
ing or device isolation create damage and/or stress which eventually, upon
annealing, develop into extended defects. Also thermal stresses during pro-
cessing may relax into dislocations or related extended defects. Whatever the
application or device structure, p-n junctions are generally an inherent part of
it and the fabrication method of choice in industry is by ion implantation, as it
allows a precise control of the junction depth and sheet resistance. The penalty
paid is the formation of point and extended defects, which are the result of
the clustering of the displaced lattice atoms and the associated vacancies.
This clustering occurs during the post-implantation annealing, necessary to
activate the dopants.

In view of these issues, defect engineering has become a mature and excit-
ing field of expertise in the silicon world but lacks thousands of man-years
of research in the case of Ge processing. The understanding of processes like
ion implantation-damage annealing or solid-phase epitaxial regrowth, point-
defect engineering for dopant diffusion control, etc. are far less well-developed
in the case of Ge and, therefore, require renewed interest. The concept of get-
tering, where beneficial use is made of extended defects to remove detrimental
metallic contaminants from the active device regions, and playing a crucial
role in yield engineering in the IC industry, hardly exists for germanium. It is
the aim of this book to fill this gap and form a bridge between the fundamen-
tal material studies carried out mainly in the fifties and sixties and today’s
practice and research interests. Defect formation in state-of-the-art processing
modules intended for sub 32 nm technology nodes will be used to illustrate
the theoretical and physical defect studies.

The aim is to give an overview of the physics of extended defects in germa-
nium, i.e., dislocations (line defects), grain boundaries, stacking faults, twins
and {311} defects (two-dimensional defects) and precipitates, bubbles, etc.
The first chapter will be more fundamental, describing the crystallographic
structure and mechanical properties of dislocations, which have been estab-
lished in the fifties and sixties, based on defect etching and optical or electron
microscopy. Currently, focus is on in situ studies of dislocation properties in a
transmission electron microscope. It will be pointed out that dislocations are
essential for the plastic deformation of germanium. Methods will be described
to analyse and image dislocations and to evaluate their structure. Another
field of interest is the measurement of strain distribution with nanometer
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scale resolution. Indentation studies at room temperature are useful for the
understanding of high pressure phase transformations in Ge and for revealing
the hardness properties of Ge and related alloys. Dislocations can also impact
on the diffusion of impurities, as will be outlined in the last paragraph.

The second chapter deals with the electrical and optical properties of dis-
locations, which are crucial for device operation. An overview of the different
models, describing the electron states, will be given, starting from the dan-
gling bond model of Shockley and Read. While over the years, large progress
has been made, a full understanding is still lacking due to the complexity of
the problem. Besides the presence of dangling bonds in the core of the dislo-
cation, which may reconstruct, the states associated with the strain field may
split from the band edges. Moreover, impurities tend to aggregate in the strain
field of a dislocation, giving rise to greater recombination activity. The com-
bination of optical and electrical spectroscopy has led to the concept where
the dislocation states form one-dimensional bands in the band gap of germa-
nium (or silicon) instead of a single level, which depends on the line charge
captured in it. Chapter 3 describes the mechanical and electrical properties
of grain boundaries in Ge.

Chapters 4 and 5 deal more with today’s problems, namely, with the for-
mation of extended defects during the preparation of modern Ge substrates,
including epitaxial deposition on Si, condensation of SiGe-on-Insulator and
smart-cut or bonded material and the issue of extended defect formation
during modern processing, for example, by ion implantation or laser annealing.

In brief, the book should provide a fundamental understanding of the
extended-defect formation during Ge materials and device processing, provid-
ing ways to distinguish harmful from less detrimental defects and point out
ways for defect engineering and control.

Key features:

• Intended for a wide audience including students, scientists and process
engineers employed in material manufacturing, semiconductor research
centres and universities

• State-of-the-art information available for the first time as an all-in-source
• Extensive reference list making it an indispensable reference book
• Complementary to the first book on Ge Materials and Devices, edited in

2007 by the same authors.

Finally, we acknowledge M. Caymax, P. Clauws, M.-L. David, G. Eneman,
R. Loo, M. Meuris, A. Satta and L. Souriau for useful discussions and the use
of some results. We also thank the IMEC Ge and III–V team.

Belgium Prof. Dr. Cor Claeys
September 2008 Dr. Eddy Simoen
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Dislocations in Germanium:
Mechanical Properties

1.1 Introduction

Germanium, having a face-centered cubic (fcc) diamond lattice, is brittle
at room temperature like other Group IV semiconductors. This means that
when applying a load on the material, it breaks before it deforms plastically.
Gallagher [1], soon followed by some other Groups [2,3], was the first to report
that when a stress is applied at high temperatures (in his work above 500◦C)
Ge becomes ductile. In other words, it deforms permanently by glide of dislo-
cations (plastic flow). It was soon discovered that the glide planes were (111),
that is, the planes of highest packing density in the structure [1–4], while the
slip direction turned out to be <110> [5], the direction of the Burgers vector
with modulus b.

As will be seen later, the plastic deformation of Ge is determined by the
dynamic properties of the dislocations. The fact that Group IV elements are
characterized by covalent bonding of four nearest neighbors gives rise to some
unique mechanical behavior [6]. It is expected that the intrinsic dislocation
or Peierls energy, taking into account the periodic structure of the lattice,
is rather high in fcc diamond. This is related to the bonding rearrangement
required in the core structure when moving a dislocation from one equilibrium
site to another [6–8]. This means that at room temperature a high surface
hardness is observed upon indentation, while at the same time the material
breaks before it deforms. Another typical behavior is the yielding found in
the stress–strain curve under dynamic load, using a constant strain rate έ [6].
However, before dealing with the plastic flow of germanium, first, the elastic
properties will be summarized and, more specifically, the first- and higher-
order elastic constants discussed. They are keys to the understanding of the
linear expansion coefficient (αe) with temperature, which in turn is important
for describing thermal stresses that may occur when a temperature gradient
is present in the material or when two films with different αe are in contact
with each other (epitaxial growth).
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In Sect. 1.3, some definitions will be given, and the possible structures of
dislocations in the diamond lattice are described. Next, dislocation formation
mechanisms are reviewed, followed by some experimental techniques for the
observation of dislocations. In Sect. 1.5, the hardness of Ge at room tem-
perature is discussed in the context of plastic flow or high-pressure phase
transformation. The plastic flow at higher temperatures is the subject of
Sect. 1.6, where a key feature is the velocity and multiplication of disloca-
tions under a shear stress τs. It is well-known that dislocations can attract
impurity atoms and point defects due to the elastic strain field surrounding
them. This can lead to preferential precipitation and also to an enhanced
diffusion along dislocation cores, as outlined in detail in Sect. 1.7.

1.2 Elastic Properties of Germanium

This section describes the elastic properties of germanium in terms of the
first- and third-order elastic constants. In first paragraph, some basic material
properties are defined. Next, the temperature dependence of the linear ther-
mal expansion coefficient of Ge is given and discussed based on the Grüneisen
parameter. In the third paragraph, the temperature dependence of the three
first-order elastic constants is given, followed by the behavior of the third-order
constants. Finally, the internal friction behavior of germanium is reviewed
from which relevant information regarding the elastic properties of the mate-
rial can be derived. For an introduction to the elastic properties of crystalline
solids, the review by Huntington [9], for example, may be consulted.

1.2.1 Definitions

The elasticity of a diamond cubic Group IV semiconductor material is
described in terms of the first-order elastic constants. In this regime, the
strain is linearly dependent on the stress, and the relationship is known as
Hooke’s law. The 36 term fourth-order modulus tensor of Si or Ge can, based
on symmetry arguments, be reduced to three terms, which are symbolized by
C11, C12, and C44 and are related to the Young’s modulus in the direction
<100> (Y100), <111> (Y111), and the shear modulus Gs in <100> (G100) [10]
as follows:

C11 = 1/Y100, (1.1a)
C44 = 1/G100, (1.1b)
C12 = 3/2Y111 − 1/2Y100 − 1/2G100. (1.1c)

These constants are intimately related to how (acoustic) vibrations are propa-
gated and absorbed in the material. The Young’s moduli are derived from the
resonant frequencies in the longitudinal direction, while Gs is the torsion or
shear modulus (deformation in the transverse direction of the applied force).
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From an atomistic perspective, Y100 at 0K can be expressed as being pro-
portional to EB(0)/d3(0) [11], with EB the atomic bonding energy and d the
bond length. The softening of Young’s modulus with higher temperature T
can be described by considering the temperature dependence of EB and d,
given by [11]

EB (T ) = EB (0) −
T∫

0

CV (y) dy, (1.2a)

d (T ) = d (0)

⎡
⎣1 +

T∫
0

αe (y) dy

⎤
⎦ , (1.2b)

with CV (T ) the specific heat or heat capacity at a constant volume and αe(T )
the temperature-dependent linear thermal expansion coefficient or thermal
volume expansivity. For Ge, this parameter is found experimentally to be
given by [12]

αe (T ) = 6.05 × 10−6 + 34.22 × 10−9 (T − 273)

−0.35× 10−12 (T − 273)2 . (1.3)

This leads to a first-order linear reduction of Y100 with T , described by [11]

Y100 (T ) = Y100 (0) [1 − BT ] (1.4)

and represented in Fig. 1.1. It has been shown that the slope of the tem-
perature dependence Bexp ∼ CV/EB(0), with EB(0) = 2.58 eV for Ge [11]
and CV = 3Rg for T ≥ TD, with Rg the ideal gas constant and TD the
Debye temperature, which is 360K for Ge [11]. The leveling-off of Y100 at

low temperatures stems from the smaller
T∫
0

CV (y) dy values because of the

T 3 approximation at low temperature [13–17]. It has been demonstrated that
Y100(T )/Y100(0) = [ω(T )/ω(0)]2, with ω the optical Raman frequency, estab-
lishing a direct link between the thermally driven softening of the elasticity
and bond expansion and vibration in the Ge lattice [11].

From the three first-order elastic constants, one can derive the compress-
ibility Ks and Poisson’s ratio μP [9]. For small pressures (P ) in cubic crystals,
one finds for the isothermal compressibility or the inverse bulk modulus BT

−1

B−1
T = Ks = − [∂V/∂P ]T /V = 3 (C11 + 2C12) , (1.5)

with V the atomic volume. This parameter increases with increase in temper-
ature. The Poisson’s ratio μP is given by [9]

μP = −C12/C11 (1.6)
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Fig. 1.1. Agreement between calculated and measured temperature dependence
of Young’s modulus for Ge, based on the model of (1.1)–(1.3). Tm is the melt
temperature. The experimental data are from [10] (after [11])

and is nearly temperature-independent [10]. An important parameter related
to the temperature dependence of the thermal expansion coefficient is the
Grüneisen parameter γ [10, 18–19], used to describe the anharmonic properties
of solids, defined by the relation [10]

γ = αe3V/KsCP = αe3V/KtCV , (1.7)

with CP the heat capacity at constant pressure. Normally γ is only weakly
temperature-dependent in the low temperature range and in the case of Ge
equal to 0.65 at −173◦C and 0.74 at −73◦C. The Grüneisen parameter is
lower for both Si and for compound semiconductors such as GaAs, InAs, and
InSb. In most cases there exists a correlation with the Debye temperature
of the material. The atomic volume can be calculated based on the lattice
parameter, which has been determined as a20◦C = 5.65748 Å at 20◦C, while
the density is 5.3234± 0.00025 g cm−3 at 25◦C [11].

1.2.2 Linear Expansion Coefficient of Ge

The expansivity of Ge at low temperatures has been studied by several groups
[18–26]. One of the striking features, obvious in Fig. 1.2, is the fact that αe

becomes negative for a reduced temperature T/TD = 0.04. Below T/TD = 0.04
again positive αe is obtained, which can be described by a T 4 dependence
[19]. This anomalous behavior of αe for several diamond-like materials can be
understood within the scope of the quasi-harmonic oscillator model in terms of
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the temperature dependence of the Grüneisen parameter [26–28]. The latter
represents the strain derivative of the lattice vibration frequencies. Several
experimental and theoretical estimates of γ have been performed in the past,
which are summarized in Fig. 1.3 [26]. From this, it is clear that there is still
insufficient theoretical understanding to explain the negative γ derived from
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thermal expansion. It should be remarked that αe is also slightly depending
on the doping density, increasing with hole concentration in p-type Ge [29].

1.2.3 The First-Order Elastic Constants

The first-order elastic constants have been measured at both low [9, 30–35]
and high temperatures [36–38]. It was found that they reduce in the first
instance linearly with increasing temperature [36–38], as shown in Fig. 1.4 [37].
This is in agreement with the theory of anharmonicity of crystals. Values for
C11, C12, and C44 at 25◦C and for some other mechanical properties of Ge
are summarized in Table 1.1 [39].

As theoretically predicted by Keyes [40], the elastic constants of Ge also
depend on the doping concentration [41–43]. This is shown in Fig. 1.5 for the
case of heavy n-type doping [41]. The reduction of C44 in Fig. 1.5 is related
to the electronic contribution to the strain energy function. Since the elastic
constants are the strain derivatives of the free energy of the crystal, it is
assumed that heavy doping reduces the electronic contribution to the latter.
Based on this hypothesis, a value for the shear deformation potential constant
of 17.0± 0.2 eV was derived from experiments on heavy n-type material [42].
A similar value was obtained at liquid nitrogen temperature, while it was
19.2 eV at 4.2K [42].
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Table 1.1. Mechanical properties at 300 K of silicon and germanium

Silicon Germanium

[100] Young’s modulus (1011 dyne cm−2) 13.0 10.3
[100] Poisson’s ratio 0.28 0.26
Bulk modulus (1011 dyne cm−2) 9.8 7.13
Shear modulus (1011 dyne cm−2) 5.2 4.1
Hardness (Mohs) 7 6
Density (g cm−3) 2.329 5.323
C11 (1011 dyne cm−2) 16.60 12.60
C12 (1011 dyne cm−2) 6.40 4.40
C44 (1011 dyne cm−2) 7.96 6.77
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Fig. 1.5. The temperature dependence of C44 in pure and heavily doped n-type
germanium (after [41])

1.2.4 Third-Order Elastic Constants

Studies have also been performed of the third-order elastic constants [26, 42,
44–49]. These are related to the anharmonicity of the crystal, in other words,
the nonlinearity of the interatomic forces with respect to atomic displace-
ments. The third-order constants are important for some material properties
like the thermal expansion, thermal conductivity, crystal stability, and frac-
ture [46]. There are in total six independent third-order elastic constants in
a cubic crystal called C166, C112, C111, C456, C144, and C123. Again, there
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exist heavy-doping effects, whereby, for example, the sign of C456 reverses at
3×1019 cm−3 As doping [42]. The temperature dependence of the third-order
constants is represented in Figs. 1.6 and 1.7 [26].

As can be seen from Fig. 1.7, C123 and C144 exhibit the highest tem-
perature variation, with a positive value at very low temperature. Some
local-density-functional approximation calculations of the third-order elastic
constants have also been reported [50, 51].

1.2.5 Internal Friction of Ge

One way of obtaining more information on the elastic properties of crystals is
by investigating the internal friction (Q−1

i ), which can be regarded as the resis-
tance against motion. In practice, internal friction measurements monitor the
rate of energy dissipation of crystals undergoing forced periodical vibrations,
at small strain levels and in the kilohertz to megahertz frequency range typ-
ically (acoustic regime) [52–54]. Such experiments must be performed under
good vacuum to avoid energy dissipation by in-diffusing contaminants [53]. If
one applies an alternating stress, the vibrational energy ΔW dissipated per
cycle relative to W , the total stored vibrational energy at maximal strain, is
determined. It has been assumed that this dissipation can happen through
two different mechanisms: (1) by viscous motion of dislocations; (2) by stress-
induced diffusive motion of point defects [53]. The observation that at the
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dynamic yield point the internal friction showed an abrupt increase has been
interpreted in favor of the first mechanism [52].

Early experiments on lowly-doped n-Ge indicated a relaxation peak at
382◦C. In deformed crystals, however, no such peak was observed [53]. While
it was first suggested that this feature is due to a vacancy drag relaxation
in the impurity atmosphere of dislocations, this was soon after questioned
by Southgate [55]. He expects from theory that dislocations will affect the
internal friction in deformed samples at higher temperatures, with activation
energy in the range 1.2 eV. In practice, such a behavior was found above
500◦C, showing an activation energy of 1.1 eV [55]. At the same time, the
ultrasonic attenuation in germanium in the 20–300MHz range was ascribed
to the damped forced oscillation of dislocation segments [56].

The matter of the origin of the 400◦C internal friction peak at f = 100 kHz,
shown in Fig. 1.8, has been finally settled by Gerk and Williams [57]. It
has been ascribed to the acoustic–electric effect and refers to the develop-
ment of a dc electric field along the direction of propagation of a traveling
acoustic wave in a medium containing mobile charges. The response time of
the charges to the perturbation is thought to be composed of an intrinsic,
temperature-activated lifetime, τi, and an extrinsic lifetime, τe, of the form of
the Shockley-Read-Hall type. An activation energy of 1.1 eV for Ge has been
derived [53, 57–59], suggesting that Auger recombination is the origin of the
intrinsic recombination at ∼400◦C [57]. This interpretation was further sup-
ported by the fact that as the resonance frequency is changed, the temperature
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dependence of the peak height is that of the charge carrier density. Moreover,
the peak height and location are independent of the type and concentration
of impurities, except for very high doping densities and is also independent of
the dislocation density Nd [57].

As can be noted in Fig. 1.8, the logarithmic decrement δ (or internal fric-
tion loss) increases beyond the 400◦C peak, especially for the deformed sample
[57]. The loss increases proportionally with Nd and inversely proportional with
f , according to the empirical relationship

δ =
Ndδ0

f
exp (Ei/kT )

[
n0

ni

]m

(1.8)

for a strain amplitude in the range 10−6–10−5. In (1.8) δ0 is a constant in the
range 0.1–10 cm2 s−1 for Ge [57] and m is an empirical factor slightly higher
than 2 and representing the n-type doping dependence of the dislocation
damping. For an electron concentration n0 < 1017 cm−3 (<ni, the intrinsic
carrier concentration at the temperature of the internal friction experiment),
the doping factor disappears (m = 0), while at high doping concentration,
the internal friction loss becomes more pronounced, most likely due to pref-
erential precipitation of the doping impurities on the dislocation cores [57].
On the other hand, it was concluded that impurities like oxygen or copper
did not affect the dislocation damping in the high-temperature regime [57].
The intrinsic activation energy Ei is closely connected with the dislocation
velocity, as will be discussed further.

It should also be remarked that many investigators found internal friction
loss peaks in deformed germanium at much lower temperatures than 400◦C,
even below room temperature, which were ascribed to the motion of grown-in
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single kinks [58–71]. This was related to the fact that from theory a low
activation energy for single kink motion ESK(∼0.1 eV) was anticipated. Later
studies revealed much higher values for ESK [72] so that this interpretation
has been abandoned. It was suggested that these low temperature loss peaks
possibly originate from the motion of hydrogen at the dislocations [67] or from
the motion of deformation induced point defects [72].

1.3 Dislocation: Definitions and Structures

The simplest way to view a dislocation is to consider it as the line defect ter-
minating an extra {111} half plane of atoms inserted in the otherwise perfect
lattice (see Fig. 1.9) and ending on the slip plane 2 [73]. The translational
symmetry of the crystal is preserved in the direction of the dislocation but
perturbed in radial direction. It is a topological defect, which cannot exist
in thermodynamic equilibrium: some thermal or mechanical stress has to be
applied to introduce a dislocation. As Ge has an fcc lattice, it has a double
{111} layer of atoms as in Fig. 1.9. In principle, glide can occur between planes
1 and 2 or between 2 and 3, whereby the spacing has a ratio of 3:1 while the
number of bonds to be broken is 1:3, respectively. This means that associated
with the two different {111} glide planes two main types of dislocations can
be considered, belonging to the shuffle set (wide spacing plane 1 and 2) or the
glide set (close spacing 2 and 3). While it was originally accepted that glide
occurred through the shuffle set, providing a favorable way for easy shear,
recent evidence, to be discussed later, casts some doubt on this, so that the
matter is unresolved at the moment [74, 75].

Important parameters for a dislocation are the angle α between the dis-
location direction and its Burgers or lattice translation vector b (modulus
b = 0.4 nm in Ge). For a perfect dislocation, b is the shortest allowed lat-
tice vector, which for the diamond lattice is 1/2 <110> – half the diagonal
of the cubic face or one of the short edges of the tetragonal cell, as can be

Plane 1

Plane 2
Plane 3

[111]

[110]

[011]
(a) (b)

Fig. 1.9. (a) The diamond cubic structure; (b) a 60◦ dislocation in the diamond
cubic structure
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Fig. 1.10. The diamond lattice; the height above the plane of projection is denoted
in fractions of the cell dimensions normal to that plane. (a) The cubic unit cell; (b)
its projection on (001); (c) the “tetragonal” unit cell; (d) its projection on (110).
The “tetragonal” unit cell is indicated by broken lines in (b) (after [73])

viewed in Fig. 1.10 [73]. It corresponds to the shortest distance between two
equivalent atoms.

In the cubic diamond lattice, both the Burgers vector and the dislocation
(axis) lie in <110> directions. From this follows that there are in principle
only three basic types of perfect dislocations to be considered [73], depending
on α: a pure edge or 90◦ dislocation, a 60◦ dislocation, and a screw (or “0◦”)
dislocation. The structure of the dominant types in Ge is depicted in Fig. 1.11
[73]. It should be remarked that while the screws have no broken bonds, a
row of broken (dangling) bonds exists in the core (along the axis) of a 60◦

dislocation.1 As will be seen later, this is believed to be at the origin of the
electrical activity of dislocations [6, 67]. Pure edges, introduced by bending
(see Sect. 1.4), may also run along a [112] axis with a 1/2 a0<110> Burgers
vector [70] (a0 is the lattice parameter).

Real dislocations are only straight along their axis for a few atomic spac-
ings. In practice, defects occur in the dislocation structure, which are called
kinks and jogs. A jog is a short piece where the dislocation is interrupted into
another orientation [73]. Jogs in an unstable form can act as sources of point
defects (vacancies; interstitials) and may impede the mobility of dislocations

1 Often also called “edge” dislocation, although a pure edge dislocation is charac-
terized by an angle of 90◦ between its axis and Burgers vector.
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Fig. 1.11. Screw dislocation in the diamond lattice: (top) its simplest form; (middle)
alternative form with double bonds. Corresponding atoms have the same number.
a Axis, b Burgers vector. (bottom) 60◦ dislocation in the diamond lattice; heavy lines
denote extra half plane. a Axis, b Burgers vector (after [73])


