

Frank Thuselt Physik Professor Dr. rer. nat. Frank Thuselt

Physik

Vogel Buchverlag

Professor Dr. rer. nat. **Frank Thuselt** Jahrgang 1946

1965	Studium der Physik in Dresden und Leipzig – Promotion mit einer Arbeit zur
	Halbleiteroptik.

1974–1984 Wissenschaftlicher Mitarbeiter am Bereich Halbleiterphysik der Universität Leipzig.

1979 (gemeinsam mit vier weiteren Kollegen) Gustav-Hertz-Preis der Physikalischen Gesellschaft der DDR für Arbeiten zu Elektron-Loch-Tropfen im Galliumphosphid.

1984 Arbeitsgruppe Wissenschaftlicher Gerätebau der Universität Leipzig.

1985–1989 Projektleiter: Entwicklung/Automatisierung. CONVAC GmbH Geräte zur Halbleitertechnologie, Wiernsheim/Vaihingen/Enz.

1989–1992 Projektleiter: Unternehmensberatung, Feldbustechnologie. TMG i-tec GmbH (Unternehmen der Technologie Management Gruppe), Karlsruhe.

1992 Fachhochschule Schmalkalden, Fachbereich Informatik.

Seit 1996 Hochschule Pforzheim: Automatisierungstechnik (SPS, Feldbusse, Mikrocon-

troller), Physik/Halbleiterphysik, numerische Mathematik mit MATLAB.

Weitere Informationen: www.vogel-buchverlag.de

ISBN 978-3-8343-3139-7

1. Auflage. 2010

Alle Rechte, auch der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Hiervon sind die in §§ 53, 54 UrhG ausdrücklich genannten Ausnahmefälle nicht berührt.

Printed in Germany Copyright 2010 by

Vogel Business Media GmbH & Co. KG, Würzburg

Vorwort

Das vorliegende Lehrbuch wurde speziell für Bachelor-Studenten geschrieben. Nach den Zielsetzungen der Bologna-Konferenz wird ein Großteil von ihnen anschließend in der Praxis tätig sein. Bei Ingenieuren ist das sowieso seit Langem der Fall, aber auch Physiker werden zunehmend praxisorientierte Aufgaben bearbeiten. Aus diesem Grund wurde hier Wert darauf gelegt, möglichst viele Bezüge zu ingenieurwissenschaftlichen Fragestellungen zu finden. Der Autor kennt diese Anforderungen aus eigener Praxistätigkeit und Lehre.

Am Markt gibt es zahlreiche Physikbücher. Darunter finden sich berechtigterweise solche, die das Gesamtgebiet der Experimentalphysik umfassend behandeln. Diese sollte man sich auf jeden Fall zum Nachschlagen ins Bücherregal stellen. Verlag und Autor hatten nicht die Absicht, ein weiteres derartiges Lehrbuch zu schaffen, sondern eher ein *Lernbuch*. Dabei sollte, schon wegen des verdaulichen Pensums, aber auch um den Preis in Grenzen zu halten, der Umfang beschränkt bleiben. Der üblicherweise in einem einführenden Lehrbuch enthaltene Stoff musste deshalb notwendigerweise beschränkt werden. Wir haben dabei insbesondere solche Gebiete in den Mittelpunkt gestellt, die für die spätere Anknüpfung weiterer technischer Studienfächer wichtig sind.

So haben wir dem Messvorgang und der Auswertung logarithmischer Darstellungen breiten Raum gewidmet. Bei der Behandlung der Schwingungsgleichung wird bereits in Kapitel 3 (Mechanik) auf Anwendungen in anderen Teilgebieten, hier der Elektrotechnik, hingewiesen. Relativ ausführlich werden Schwingungen mit Dämpfung und Fremderregung behandelt, einschließlich der Resonanz sowie Bode- und Nyquist-Diagramm. In der Thermodynamik wird Wert auf die Behandlung der Entropie mit Exergie und Anergie gelegt. Der thermodynamische Wirkungsgrad lässt sich mit diesen Größen am zweckmäßigsten beschreiben. Die Entropie hat außerdem Bezüge zur Informationstechnik. Die Mikrophysik allein ist ein sehr umfangreiches Gebiet. Hier steht der Aufbau der Substanzen, vor allem der Festkörper, im Vordergrund, während die Behandlung von Elementarteilchen und Atomkernen allein schon wegen des Umfangs gestrichen werden musste.

Trotz der genannten Einschränkungen werden jedoch die wichtigsten mathematischen Herleitungen und physikalischen Zusammenhänge dargestellt. Damit wird die Denk- und Arbeitsweise der Physik deutlich gemacht – eine Ansammlung lediglich einzelner Fakten eignet sich in dieser Wissenschaft nicht zum Lernen. An weniger zentralen Stellen werden die Verknüpfungen auf eher anschauliche Weise vermittelt. Die allgemeine Ableitung der Wellengleichung zum Beispiel ist für das Grundstudium zu kompliziert, deshalb wird sie lediglich mit Hilfe ihrer Lösungen (fortlaufende Sinuswellen) plausibel gemacht.

Die Physik ist in großen Teilen eine messende Wissenschaft. Daher wird gezeigt, wie man misst, Messungen auswertet und Ergebnisse darstellt. Das experimentelle Vorgehen wird an einigen Beispielen ausführlich beschrieben. Daher ist das Buch auch für Fernstudenten geeignet, die nicht in Vorlesungen oder Laborveranstaltungen die Möglichkeit haben, Experimente mitzuerleben oder selbst durchzuführen.

Die heutige Generation von Studenten ist es gewohnt, mit dem Internet zu arbeiten. Darauf haben wir auch Rücksicht genommen und die passenden Beiträge

von dort in das Arbeiten mit dem Buch einbezogen. Tabellen mit Maßeinheiten und Substanzdaten (Dichte, spezifische Wärme, spezifische Widerstände usw.) stehen zum Beispiel ausführlich in Wikipedia zur Verfügung. Wir haben solche Angaben lediglich in wenigen Beispielen zur ersten Orientierung eingestreut. Auch zur ergänzenden Information über Gebiete, die im Buch keinen Platz mehr finden konnten, eignet sich das Internet hervorragend. Hinweise zur Suche im Internet sind an vielen Stellen des Buches eingestreut. Da das Internet ein Medium ist, das sich beständig verändert, haben wir Links auf konkrete Seiten in einer eigenen Datei zusammengetragen. Diese finden Sie auf der zum Buch gehörigen Webseite

Zum Lernen gehört in der Physik auch Rechnen. Viele Zusammenhänge werden erst durch eigene Rechnung klar. Hierzu sind Übungsaufgaben und vorgerechnete Beispiele eingestreut. Heute steht neben der bewährten Zahlenrechnung auch die grafische Visualisierung als didaktisches Mittel zur Verfügung. Auf den begleitenden Webseiten zum Buch werden deshalb nachvollziehbare Numerik-Programme für das Arbeiten mit MATLAB/Octave oder Scilab bereitgestellt. Auf diesen Seiten finden Sie übrigens auch die Abbildungen in farbiger Ausführung als PDF zum Download für Studenten und Dozenten.

Das Buch basiert auf Erfahrungen in eigenen Vorlesungen und zugehörigen Skripten. Größere Teile beruhen auf Lehrbriefen des Verfassers, die seit einiger Zeit in der AKAD Privat-Hochschule als Studienmaterial eingesetzt werden. Der Autor bedankt sich, insbesondere bei der verantwortlichen Programm-Managerin, Frau Constanze Weis, für die Möglichkeit, dieses Material auch in das vorliegende Buch übernehmen zu dürfen.

Herzlichen Dank schulde ich meinem Kollegen und «de facto-Sohn» Dipl.-Phys. Felix Paul Gennrich von der Universität Innsbruck sowie vor allem meinem langjährigen, immer hilfsbereiten Mitarbeiter an der Hochschule Pforzheim, Dipl.-Phys. Michael Bauer, für viele kritische Kommentare und Korrekturlesen. Michael Bauer steuerte außerdem Fotos bei und erarbeitete mit mir zusammen die Demonstrationsexperimente.

Vor allem bedanke ich mich bei meiner Lebensgefährtin Henriette Gennrich für ihre unermüdliche Hilfe und ihre (fast) immer geduldige Mitarbeit am Manuskript. Sie hat mir den Rücken für die Arbeit freigehalten und auf Freizeit verzichtet, gemeinsam haben wir oft am Ausdruck gefeilt.

Nicht zuletzt danke ich dem Vogel Buchverlag für die Möglichkeit der Publikation und für die anspruchsvolle Umsetzung.

Neulußheim und Pforzheim

Frank Thuselt

Inhaltsverzeichnis

Vorv	wort	• • • • •		5
Einl	eitun	g		13
1	Phys	ikalisch	nes Messen	17
	$1.\dot{1}$		heiten und ihre Dimension	17
	1.2		ngaben und Größengleichungen	18
	1.3		isgrößen	21
		1.3.1	Länge	21
		1.3.2	Zeit	22
		1.3.3	Masse	24
		1.3.4	Stoffmenge	26
		1.3.5	Weitere SI-Basisgrößen	27
	1.4	Abgele	eitete Größen	28
	1.5		tung des Einheitensystems für die Praxis	30
	1.6		ertung von Messungen	32
			Physik als messende Wissenschaft	32
			Darstellung von Messergebnissen	33
			Fehlerabschätzungen	38
	Zusa		fassung	41
		,	gen	43
		, c		
2	Kine	matik .		45
	2.1	Gleich	förmige und ungleichförmige Bewegung	46
		2.1.1	Geradlinige gleichförmige Bewegung	46
		2.1.2	Geradlinige ungleichförmige Bewegung	47
		2.1.3	Physikalische Differentiale	49
		2.1.4	Exemplarischer Messvorgang zur beschleunigten	
			Bewegung	50
		2.1.5	Gleichmäßig beschleunigte Bewegung	54
	2.2	Zusan	nmensetzen von Geschwindigkeit und Beschleunigung	56
		2.2.1	Geschwindigkeit und Beschleunigung als	
			vektorielle Größen	56
		2.2.2	Bezugssysteme	57
		2.2.3	Der Wurf	59
	2.3	Kreisb	ewegung	63
		2.3.1	Allgemeines	63
		2.3.2	Gleichförmige Kreisbewegung	63
		2.3.3	Gleichmäßig beschleunigte Kreisbewegung	66
		2.3.4	Gegenüberstellung von geradliniger Bewegungund Kreisbewegung	67
		2.3.5	Vektordarstellung der Winkelgeschwindigkeit	69
	2.4		ngungen	70
			fassung	74
		trollfrag	e e e e e e e e e e e e e e e e e e e	78

3	Mec	hanik: Impuls, Kraft und Energie	/9
	3.1	Impuls	79
	3.2	Erhaltung des Impulses	81
	3.3	Kraft	82
	3.4	Newtonsche Grundgesetze der Mechanik	84
		3.4.1 Zusammenhang von Kraft und Beschleunigung	84
		3.4.2 Trägheitsgesetz	88
		3.4.3 Gegenwirkungsprinzip	89
	3.5	Spezielle Kräfte	90
		3.5.1 Kraft im Schwerefeld – Gravitation	90
		3.5.2 Elektrische Kraft im Feld einer Punktladung	91
		3.5.3 Elektrische Kraft im homogenen elektrischen Feld	93
		3.5.4 Elastische Federkräfte	95
		3.5.5 Kräfte am Fadenpendel	98
		3.5.6 Weitere Beispiele harmonischer Vorgänge	101
		3.5.7 Reibungskräfte	101
		3.5.8 Radialkräfte	102
		3.5.9 Kräfte im rotierenden Bezugssystem	111
	3.6	Energie	115
	3.0	3.6.1 Die mechanische Arbeit	116
			118
		8	119
		8	123
		8	126
		· · · · · · · · · · · · · · · · · · ·	
		3.6.6 Elastischer gerader Stoß	126
		3.6.7 Unelastischer gerader Stoß	128
		3.6.8 Leistung	130
	2.7	3.6.9 Weitere Beispiele für potentielle Energien	132
	3.7	Mechanik starrer Körper – Drehbewegungen	134
		3.7.1 Freiheitsgrade des starren Körpers	134
		3.7.2 Schwerpunkt	135
		3.7.3 Kräfte am starren Körper	138
		3.7.4 Drehimpuls	141
		3.7.5 Bewegung um eine Achse – Drehmoment	
		3.7.6 Gleichgewicht am starren Körper	
		3.7.7 Trägheitsmomente	
		3.7.8 Satz von Steiner	
		3.7.9 Arbeit, Energie und Leistung beim starren Körper	
		3.7.10 Beispiele und Anwendungen	154
		ammenfassung	
	Kon	trollfragen	171
4	Mec	hanik der Flüssigkeiten und Gase	173
	4.1	Ruhende Flüssigkeiten und Gase	173
		4.1.1 Druck	174
		4.1.2 Schweredruck in Flüssigkeiten	175
		4.1.3 Auftrieb und Schwimmen	175
		4.1.4 Das Boylesche Gesetz	180

		4.1.5	Barometrische Höhenformel	180
		4.1.6	Rotierende Flüssigkeiten	183
	4.2	Ströme	ende Flüssigkeiten und Gase	184
		4.2.1	Allgemeines zu Strömungsvorgängen	185
		4.2.2	Kontinuitätsgleichung	186
		4.2.3	Laminare Strömung in einem Rohr	187
		4.2.4	Bernoullische Gleichung	189
		4.2.5	Wirbel in Flüssigkeiten und Gasen	192
		,	fassung	194
	Kon	trollfrag	gen	196
5	Schv	vingung	gen	197
	5.1		ngungen in der Ebene	198
	5.2		gerungen von Schwingungen und Fourier-Entwicklung	202
	5.3		bungen	203
	5.4		ebilanz bei Schwingungen	206
	5.5		ub: Rechnen mit komplexen Zahlen	207
	5.6		npfte Schwingungen	209
		5.6.1	Lösung der Schwingungsgleichung	209
		5.6.2	Elektrischer Schwingkreis	215
	5.7		ngene Schwingungen	216
		5.7.1	Vorläufige Abschätzungen und Diskussion der Lösung	217
		5.7.2	Gesamtverhalten im eingeschwungenen Zustand	219
	Zusa	amment	fassung	226
			gen	228
6	Elek	trotechi	nik	229
-	6.1		ektrische Gleichstromkreis	230
		6.1.1	Elektrischer Strom und elektrische Spannung	230
		6.1.2	Ladung als Ursache des elektrischen Stroms	233
		6.1.3	Zusammenhang zwischen Spannung und Strom –	
		01110	das Ohmsche Gesetz	236
		6.1.4	Arbeit und Leistung des elektrischen Gleichstroms	241
		6.1.5	Kirchhoffsche Gesetze	242
		6.1.6	Anwendungen der Kirchhoffschen Gesetze	246
	6.2	Elektro	ostatik	251
		6.2.1	Die elektrische Ladung	
		6.2.2	COULOMBsches Gesetz	255
		6.2.3	Das elektrische Feld	256
		6.2.4	Elektrisches Potential und elektrische Spannung	260
		6.2.5	Elektrische Ladungen auf Leitern	262
		6.2.6	Spannung und Feldstärke im homogenen Feld	263
	6.3		ondensator	265
		6.3.1	Ladung und Spannung am Plattenkondensator	265
		6.3.2	Parallel- und Reihenschaltung von Kondensatoren	267
		6.3.3	Kapazitäten von Kondensatoren unterschiedlicher	
			Geometrien	268
		6.3.4	Energieinhalt eines Kondensators	272

	6.4	Die ele	ektrische Flussdichte	273
		6.4.1	Elektrisches Feld im Dielektrikum	273
		6.4.2	Elektrische Feldenergie	277
		6.4.3	Berechnung des Verschiebungsfeldes	277
	6.5	Magn	etfeld elektrischer Ströme	281
		6.5.1	Das Magnetfeld eines stromdurchflossenen Leiters	282
		6.5.2	Das Durchflutungsgesetz	283
		6.5.3	Kraftwirkung im Magnetfeld	287
		6.5.4	Materie im Magnetfeld	291
		6.5.5	Der magnetische Kreis	296
	6.6	Die ele	ektromagnetische Induktion	298
		6.6.1	Das Faradaysche Induktionsgesetz	298
		6.6.2	Gegenseitige Induktion zweier Stromkreise	
			und Selbstinduktion	
		6.6.3	Energieinhalt einer Spule und magnetische Feldenergie	
		6.6.4	Generatoren und Motoren	
		6.6.5	Ein- und Ausschalten einer Spule und eines Kondensators	
	6.7		IAXWELLschen Gleichungen	
	6.8	Wechs	selströme	
		6.8.1	Periodische Ströme und Spannungen	310
		6.8.2	Widerstand, Spule und Kondensator im	
			Wechselstromkreis	
		,	fassung	
	Kon	trollfrag	gen	329
_	-			224
7			he Optik	331
	7.1		des Lichts	
	7.2		cion	
	7.3		ung	
	7.4	-	che Abbildungen	
		7.4.1	Brechung an einer Kugelfläche	
		7.4.2	Abbildungen mit Linsen	
		7.4.3 7.4.4	Linsensysteme und dicke Linsen	
	7.5			
	7.3	7.5.1	Che Geräte	
		7.5.1	Abbildung durch das menschliche Auge	
		7.5.3	Abbildung durch die Lupe	
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tumera and Trojentronogerat	
		7.5.4 7.5.5	Abbildung durch das Fernrohr	
	7.0		Abbildung durch das Mikroskop	
	7.6 7.7		und Wölbspiegel	357
		_	fassungfassung	359
		,	gen	
	NON	ıronjraş	zen	363
8	Well	le n		367
O	8.1		nensionale Wellen	367
	0.1	8.1.1		
		0.1.1	208	507

		8.1.2	Elektromagnetische Wellen	371
		8.1.3	Einige Eigenschaften von Schallwellen	375
		8.1.4	Mathematische Beschreibung von Wellen –	
			Wellengleichung	376
		8.1.5	Energie- und Impulsdichte von Wellen	377
		8.1.6	Die Maßeinheit Dezibel – Das menschliche Hören	379
	8.2		vellen und Zylinderwellen	381
	8.3		er-Effekt	383
	8.4		gerung von Wellen (Interferenz)	385
		8.4.1	Übersicht	385
		8.4.2	Stehende Wellen	386
		8.4.3	Allgemeine Bedingung für Zweistrahl-Interferenz	388
		8.4.4	Interferenzen in großem Abstand von den Quellen	391
		8.4.5	Weitere Beispiele für Interferenzen von Licht	395
	8.5		ng und Reflexion von Wellen	401
		8.5.1	Huygenssches Prinzip	401
		8.5.2	Reflexionsgesetz	401
		8.5.3	Brechungsgesetz	402
			assung	404
	Koni	trollfrag	en	407
9	W/::	مسطماء مسم		400
9	9.1			409 410
	9.1	-	ratur	412
	9.3		und Stoffmengeemenge und Wärmekapazität	413
	7.3	9.3.1	Die Wärmemenge als extensive physikalische Größe	413
		9.3.2	Phasenübergänge	418
	9.4		etransport	422
	<i>7</i> .1	9.4.1	Arten des Wärmetransports	423
		9.4.2	Wärmeleitung	423
		9.4.3	Wärmeübergang	428
		9.4.4	Nichtstationärer Wärmetransport	430
		9.4.5	Wärmestrahlung	432
	9.5		ische Ausdehnung von Festkörpern	435
	7.5	9.5.1	Längenausdehnung fester Körper	435
		9.5.2	Volumenausdehnung von Flüssigkeiten und Gasen	438
	9.6		idsgleichung idealer Gase	440
	9.7		tuptsätze der Wärmelehre	444
	J./	9.7.1	Der erste Hauptsatz	444
		9.7.1	Der zweite Hauptsatz und die Entropie	446
		9.7.2	*	449
	0.0		Der dritte Hauptsatz	449
	9.8		dsänderungen idealer Gase	
		9.8.1	Ausdehnungsarbeit	449
		9.8.2	Wärmediagramme	450
		9.8.3	Isobare Zustandsänderungen	451
		9.8.4	Isochore Zustandsänderung	453
		9.8.5	Isotherme Zustandsänderung	453
		9 X 6	Adjapatische / jistandsanderling	455

9.9	Kreisprozesse	457
9.1	10 Irreversible Prozesse	464
	9.10.1 Irreversible Prozesse und die Entropie	464
	9.10.2 Exergie und Anergie	467
9.1	11 Reale Gase	468
	ısammenfassung	471
	ntrollfragen	480
	, 0	
10 Au	ıfbau der Substanzen aus Atomen	483
10	.1 Atome und die kleinsten Teilchen der Materie	484
	10.1.1 Vielfalt der Elementarteilchen	484
	10.1.2 Pauli-Prinzip	486
	10.1.3 Photonen	486
	10.1.4 Absorption und Emission von Licht	488
	10.1.5 Laser	489
	10.1.6 Elektronen	491
10	.2 Der Atomkern	492
10	.3 Das Bohrsche Atommodell	495
	.4 Aufbau der Atome und Periodensystem	499
	.5 Kristallstrukturen der Festkörper	503
	10.5.1 Bravais-Gitter und Elementarzellen	503
	10.5.2 Atomabstände, Packungsdichten und Konzentrationen	506
10	.6 Chemische Bindung	508
	10.6.1 Bindungsarten	508
	10.6.2 Bänder in Festkörpern	511
10	.7 Molekulares Bild der Gase	513
	10.7.1 Druck idealer Gase	513
	10.7.2 Die innere Energie idealer Gase	516
	10.7.3 Verteilung der Geschwindigkeiten und Energien	517
	10.7.4 Mikroskopische Definition der Entropie	520
	10.7.5 Anwendungen auf Festkörper	523
Zu	sammenfassung	524
Ko	ntrollfragen	529
Anhang	5	531
Ve	rwendete Formelzeichen und ihre Bedeutung	531
	rwendete Einheitenzeichen	
Ph	ysikalische Konstanten und Zahlenwerte	540
Eir	nige mathematische Formeln	541
Pe	riodensystem der Elemente	544
Fa	rbbilder zu den Kapiteln 7 bis 9	546
Literatu	ırverzeichnis	549
Quellen	verzeichnis der Bilder	551
Stichwo	ortverzeichnis	553

Einleitung

Die Physik ist eine Naturwissenschaft, die die Zusammenhänge der unbelebten Materie untersucht. Sie ist die Disziplin, die mit dem Denken in grundsätzlichen Kategorien und einer logisch-exakten Arbeitsweise vertraut macht. Physik ist, wie die Mathematik, auch eine der Grundlagen des Ingenieurstudiums.

Im Altertum war Physik die Lehre von der unbelebten und der belebten Natur. Die alten Griechen waren jedoch eher Philosophen als Naturwissenschaftler im heutigen Sinne. Sie spekulierten lieber und stellten kaum Experimente an, um ihre Spekulationen zu erhärten. Heute wird immer wieder Demokrit (um 460 v.Chr.) erwähnt, der sich bereits zu seiner Zeit Atome als kleinste Teilchen der Materie vorgestellt hatte. Seine Gedanken waren allerdings nicht besser begründet als beispielsweise die von Platon (um 427 v.Chr.), der im Gegensatz zu ihm die Körper als homogen und unendlich oft teilbar angesehen hatte.

Die heutige Arbeits- und Denkweise der Physik wurde erst mit Galilei und Newton eingeleitet. Galileis berühmte Fallexperimente am schiefen Turm von Pisa oder seine Sternbeobachtungen mittels Linsen zeugen davon; später dann Newtons Axiome, die durch Beobachtungen und Experimente gestützt wurden. Die heutige Physik, die sich schließlich daraus entwickelte, stellt eine Synthese von Experiment und mathematischer Beschreibung dar. Mit der Formulierung seiner Axiome der Mechanik begann Newton, die beobachteten und gemessenen Phänomene auf wenige Grundtatsachen zurückzuführen. Das ist heute noch das Ziel dieser Wissenschaft. Die Physik ist ein Werkzeug, mit dem wir die uns umgebende Welt mittels weniger rationaler Ordnungsprinzipien erfassen können. Bedingt durch immer ausgeklügeltere Experimente müssen diese Ordnungsprinzipien allerdings immer weiter in die Tiefe gehen.

Die Physik erklärt die Geheimnisse der Natur nicht, sie führt sie auf tieferliegende Geheimnisse zurück.

Dieser Satz des 2007 verstorbenen großen deutschen Physikers Carl Friedrich von Weizsäcker verdeutlicht dieses fortgesetzte Streben nach grundlegenden Erklärungen.

Unser heutiges Verständnis von Physik ist gekennzeichnet durch eine Verbindung von Theorie und Experiment: Auf der Basis vieler einzelner Messungen, Beobachtungen und gezielter Experimente werden Hypothesen formuliert, die durch Abstraktion zu einem Gebäude von Gesetzmäßigkeiten führen. Ein grundlegendes Werkzeug ist dabei die mathematische Beschreibung der Phänomene. Die Gesetzmäßigkeiten bauen aufeinander auf beziehungsweise lassen sich voneinander ableiten. Diese Hierarchie der Gesetze kann nicht immer weiter fortgesetzt werden. Sie endet schließlich bei wenigen so genannten Axiomen. Das sind Gesetze, die nur noch auf Grund der aus ihnen fließenden zahlreichen Folgerungen legitimiert sind, die aber sich selbst (jedenfalls innerhalb der jeweiligen physikalischen Teildisziplin) nicht weiter auf andere Gesetze zurückführen lassen. Die Legitimation der Axiome und der daraus abgeleiteten Gesetze geschieht schließlich wieder durch neue konkrete Experimente – womit sich der Kreis schließt (Bild E.1). Beim Erler-

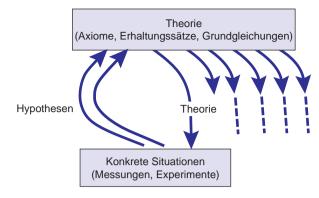


Bild E.1 Erkenntniswege in der Physik

nen der Physik erweist sich diese logische Hierarchie als sehr vorteilhaft – man muss sich nicht unzählige Einzeltatsachen einprägen, sondern kann sie aus den Zusammenhängen ableiten. In heutiger Zeit ist zusätzlich zur experimentellen Verifikation noch die Simulation mittels Rechnerprogrammen hinzu gekommen.

Seit dem Altertum haben sich viele Wissensgebiete der Naturwissenschaft aus der Physik ausgegliedert und sind zu selbstständigen Disziplinen geworden: die Chemie, die Mineralogie, Geologie und Astronomie und in letzter Zeit insbesondere die Molekularbiologie. Trotzdem folgt auch in diesen Wissenschaften der Erkenntnisgewinn im Großen und Ganzen dem obigen Prinzip.

Die Ingenieurwissenschaften haben sich aus der Physik heraus erst später zu eigenständigen Wissenschaften entwickelt. Der Begriff des Ingenieurs geht auf den lateinischen Namen *ingeniarius* (Festungsbaumeister) zurück, der von Leonardo da Vinci und später von dem französischen Festungsbaumeister Vauban geprägt wurde

Die Physik liefert eine systematische und daher gut verständliche Beschreibung der Materie (des Atombaus, des Aufbaus der Kristalle und Moleküle usw.). Sie ist auch die Grundlage der technischen Wissenschaften und stellt die Basis für grundlegende neue Technologien (hochintegrierte mikroelektronische Bauelemente wie Computerchips, Nanotechnik, Sensorsysteme, neue Leuchtelemente) dar. Durch ihre Arbeitsweise, die präzise Messmethodik und die mathematische Beschreibung gibt sie wesentliche Anregungen auch für ingenieurwissenschaftliche Tätigkeiten.

Vor allem ist die Physik auch die Grundlage aller Naturerkenntnis. Sie untersucht heute die Systematik der Elementarteilchen, den Aufbau und die Entwicklung des Kosmos, das Verhalten von Vielteilchensystemen und noch eine Vielzahl von grundsätzlichen Fragen mehr. Solche Aspekte werden wir hier jedoch nicht weiter behandeln, sondern überlassen dieses Feld den Physikern der entsprechenden Spezialdisziplinen.

Während die Physik systematisch die Natur untersucht, ist das Ziel der Ingenieurwissenschaften die Entwicklung und Konstruktion. Für ihre Arbeit müssen die Ingenieure jedoch auf die Erkenntnisse und die Methoden der Physik zurückgreifen. Kurz gesagt: Physiker liefern die Grundlagen, Ingenieure wenden sie an. Später im Beruf werden sowohl Physiker als auch Ingenieure häufig an den gleichen Problemen arbeiten. Deshalb ist es auch für angehende Physiker sinnvoll, dass sie möglichst häufig auf Anwendungen in den Ingenieurwissenschaften hingewiesen werden.

Natürlich werden physikalische Erkenntnisse auch in den einzelnen ingenieurwissenschaftlichen Disziplinen selbst vermittelt, zum Beispiel in der Statik, in der Elektrotechnik oder der Regelungstechnik. Trotzdem ist es auch für einen Ingenieur notwendig, das Gesamtgebiet der Physik zu überblicken. Schließlich muss man neue wissenschaftliche Erkenntnisse, die später während der Berufstätigkeit von der Technik aufgegriffen werden, verstehen und anwenden können. Beispiele hierfür waren in der letzten Zeit insbesondere die Mikro- und Optoelektronik oder die Nanotechnik.

Für Sie als angehende Physiker und Ingenieure im Grundstudium ist zunächst die so genannte «Klassische Physik» wichtig. Sie befasst sich vorwiegend mit makroskopischen Gesetzmäßigkeiten. Wir beginnen mit der Einführung in die Mechanik, werden jedoch zuvor einige Worte zum Messen verlieren – das ist ja gerade eine der wichtigsten Arbeitsmethoden der Physik! In den weiteren Kapiteln folgen unter anderem: Schwingungen, Elektrotechnik, Optik, Wellen und Wärmelehre. Zum Abschluss werden wir uns auch ein wenig in die Mikrophysik vorwagen, um den inneren Aufbau von Atomen, Festkörpern und gasförmigen Substanzen kennen zu lernen.

Einige Empfehlungen möchte ich Ihnen noch geben, die Ihnen beim Arbeiten mit diesem Buch während des Studiums helfen könnten: Wahrscheinlich werden Ihnen die ersten Abschnitte ziemlich einfach erscheinen. Das geht Ihnen in den Physik-Vorlesungen sicher nicht anders. Es ist trügerisch, wenn Sie Ihren Arbeitsstil daran orientieren. Das Tempo zieht bald an, und der Schwierigkeitsgrad steigt. Von da an müssen Sie sich intensiver mit dem Dargebotenen befassen. Notwendig sind hierfür Bleistift und Papier. Scheuen Sie sich nicht, in diesem Buch (wenn es Ihnen gehört) zu unterstreichen und möglichst viele Randnotizen zu machen. Wichtige Teile sollten Sie noch einmal getrennt auf einem Blatt Papier notieren und zusammenfassen. Wenn Sie das erworbene Wissen innerhalb der nächsten drei bis vier Tage noch einmal in einigen Sätzen wiederholen, beugen Sie dem schnellen Vergessen vor. Daneben sollten Sie ruhig auch öfter ins Internet schauen, gerade Wikipedia oder Wikibooks sind heute schon durchweg von ausgezeichneter Qualität. An vielen Stellen wurden bewusst Hinweise eingestreut, die auf Artikel in Wikipedia aufmerksam machen.

Wegen der Schnelllebigkeit des Internets werden konkrete Webadressen im laufenden Text selten angegeben. Sie sind auf den begleitenden Webseiten zum Buch zu finden. Im laufenden Text des Buches stehen nur allgemeine Hinweise. Bei einigen Angaben, wie zum Beispiel Wikipedia, können wir wohl davon ausgehen, dass zumindest die Stichworte eine gewisse Beständigkeit aufweisen werden. Hinweise auf physikalische Animationen stehen auch auf den Webseiten zum Buch.

In Anbetracht der vielfältigen Internet-Angebote haben wir auch keine biographischen Angaben zu bedeutenden Physikern aufgenommen. Sie sollten aber ruhig hin und wieder diese Informationen aufrufen. Auch das Wissen um die großen Leistungen von Physikern und Ingenieuren oder um historische Zusammenhänge sollte zum naturwissenschaftlichen oder technischen Kenntnisstand gehören.

Auf keinen Fall sollten Sie versuchen, physikalische Gesetzmäßigkeiten auswendig zu lernen. Machen Sie sich die Zusammenhänge deutlich! Im Buch werden sie meist mathematisch untermauert. Diese Herleitungen müssen Sie nicht unbedingt Schritt für Schritt aus dem Kopf nachvollziehen können, Sie müssen aber die wesentlichen Gedankengänge darin kennen. Man kann das als «passives Wissen» be-

zeichnen. Formeln ohne Kenntnis ihrer Zusammenhänge und Voraussetzungen sind für das menschliche Gedächtnis ziemlich wertlos.

Vergessen Sie auch nicht das Lösen der Übungsaufgaben - mit ihnen erwerben Sie Fertigkeiten im Detail. Musterlösungen dazu stehen auf den Webseiten. Zum praktischen Rechnen verwenden Sie vermutlich einen Taschenrechner, Ich empfehle Ihnen, von vornherein mit einem professionellen Mathematikprogramm zu arbeiten, das sollte auf Ihrem PC installiert sein. Sie können damit Funktionsgraphen ausdrucken, Ergebnisse visualisieren und auch Programme schreiben und abspeichern. Die Ergebnisse, insbesondere die Bilder, lassen sich in jedes andere PC-Programm übernehmen. Auf den Webseiten zum Buch werden Programme angeboten, mit denen Sie «spielen» können. Verändern Sie die Parameter und schauen Sie, wie die Lösung reagiert. Wir haben gute Erfahrungen mit MATLAB gemacht. Das ist ein professionelles Numerik-Programm, das auch in der Industrie verwendet wird. Es ist auch für Studenten nicht kostenlos und seine Nutzungsdauer auf das Studium beschränkt. Alternativen sind daher Octave oder Scilab als Freeware. Unsere Beispielprogramme sind für MATLAB/Octave und größtenteils auch für Scilab geschrieben. Der Einstieg in das Arbeiten mit einem dieser Programme scheint vielleicht erst einmal aufwendig, aber er lohnt sich. Auf den Webseiten bieten wir eine kleine Hilfe an.

Nun sollten Sie jedoch mit der eigentlichen Arbeit beginnen. Dabei lassen Sie sich vielleicht von einer chinesische Weisheit leiten:

Der Mann, der den Berg abtrug, war derselbe, der damit angefangen hatte, kleine Steine wegzutragen.

1 Physikalisches Messen

Am 11. Dezember 1998 startete die NASA eine Rakete mit einem Satelliten zum Mars. Der *Mars Climate Orbiter* sollte den Planeten auf einer Umlaufbahn umkreisen und vermessen. Nach neun Monaten Flug verglühte der 200 Millionen Dollar teure Satellit jedoch in der Marsatmosphäre – die Sonde war verloren. Der Grund: Die NASA hatte bei der Berechnung der Flugbahn mit Meter und Kilometer, der Hersteller Lockheed Martin aber mit Fuß und Zoll gerechnet. Dies war jedoch niemandem aufgefallen.

Wie Sie mit Maßeinheiten korrekt und zweckmäßig umgehen, erfahren Sie in diesem Kapitel.

Weitere Informationen zu diesen Themen finden Sie im Internet unter http://www.dradio.de/dlf/sendungen/forschak/813291/und

http://www.focus.de/digital/computer/chip-exklusiv/tid-14183/computer-fehler-die-groessten-software-desaster aid 396628.html

Messungen sind die Grundlage jeder physikalischen Beobachtung und die Grundlage des exakten Arbeitens – daher sind sie fundamental für die Physik und Technik. In diesem ersten Kapitel lernen Sie zunächst die Definition der Maßeinheiten der Mechanik sowie die Systematik des physikalisch-technischen Einheitensystems kennen. Sie werden erfahren, was physikalisches Messen ist, wie man experimentell arbeitet und wozu man Messergebnisse benötigt.

Damit verfügen Sie über das physikalische Grundgerüst, um in den ingenieurund naturwissenschaftlichen Disziplinen Messdaten zu beurteilen und auszuwerten sowie Abläufe zu analysieren, und Sie verstehen, die Genauigkeit von Messungen einzuschätzen. Die grafische Darstellung von Ergebnissen gibt Ihnen oftmals Hinweise auf die funktionale Abhängigkeit der gemessenen Größen und damit auf physikalische Zusammenhänge.

1.1 SI-Einheiten und ihre Dimension

Messung beruht immer auf dem Vergleich mit einer bekannten (und vertrauten) Größe. Beispielsweise wird die Länge mit Vielfachen eines Meterstabes (oder mit dessen Bruchteilen) verglichen. Man benötigt also ein Vergleichsmaß, einen Maßstab – hier: den Meterstab. Damit kein komplettes Chaos herrscht, müssen alle solche Vergleichsmaße genormt sein und auf ein präzises Referenzmaß zurückgeführt werden. Seit 1875 (Unterzeichnung der internationalen Meterkonvention durch 17 Staaten) ist das genormte Vergleichssystem das SI (Système international d'unités, Internationales Einheitensystem). Die Bezeichnung SI ist allerdings erst seit 1960 gebräuchlich.

Die Wahrung und Überwachung der Einheiten und die Entwicklung neuer Standards erfolgt durch das Internationale Büro für Maß und Gewicht (Bureau Inter-

national des Poids et Mesures, BIPM) mit Sitz in Sèvres bei Paris. In den einzelnen Nationen sind metrologische Staatsinstitute zuständig. In Deutschland ist dies die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig und Berlin, in den USA das National Institute of Standards and Technology (NIST).

Das SI unterscheidet zwischen Basisgrößen und davon abgeleiteten Größen. Gegenwärtig gibt es die sieben Basisgrößen Länge, Masse, Zeit, elektrische Stromstärke, Temperatur, Stoffmenge und Lichtstärke. Sie werden mit Hilfe von physikalischen Normalen (Referenzmaßstäben) festgelegt.

Wichtige abgeleitete Größen der Mechanik sind unter anderem Geschwindigkeit, Volumen, Winkel oder Dichte. Die Geschwindigkeit zum Beispiel ist definiert als Verhältnis von zurückgelegter Wegstrecke zur dafür benötigten Zeit:

Geschwindigkeit =
$$\frac{\text{Weg}}{\text{Zeit}}$$
 oder $v = s/t$ (Gl. 1.1)

Die Berechnung der Geschwindigkeit ist durch die Messung des Weges s und der Zeit t möglich. Demzufolge benötigt man für die Geschwindigkeit kein eigenes Referenznormal. Es genügt, Weg und Zeit zu bestimmen, für die es ja Normale gibt. Die Geschwindigkeit ist daher im internationalen Einheitensystem keine Basisgröße, sondern eine abgeleitete Größe, das heißt, sie kann auf die Messung von Basisgrößen zurückgeführt werden.

1.2 Maßangaben und Größengleichungen

Jede Maßangabe umfasst immer *Maßzahl* und *Maßeinheit*: Bezeichnet man beispielsweise den Erdumfang mit *u*, lässt sich diese Größe als

$$u = 40\,000\,000 \text{ m}$$

schreiben.

Die Darstellung als Produkt aus Maßzahl und Maßeinheit lautet:

$$u = \{u\} [u]$$

 $\{u\} = 40\,000\,000$ ist die Maßzahl, [u] = m die Maßeinheit.

Beachten Sie: Im (guten!) Schriftsatz werden Formelzeichen physikalischer Größen in der Regel kursiv, Maßeinheiten dagegen immer aufrecht dargestellt. Auf diese Weise werden Verwechslungen vermieden und es wird die Lesbarkeit verbessert.

Mit Maßeinheiten kann wie mit normalen Formelzeichen gerechnet werden. Maßeinheiten lassen sich beispielsweise durcheinander dividieren, in eine Potenz erheben oder kürzen. Zum Beispiel kann mittels der Umrechnungsfaktoren von Jahren (a) in Tage (d), Stunden (h), Minuten (min) und Sekunden (s)

$$1 \text{ a} = 365 \text{ d}$$
, $1 \text{ d} = 24 \text{ h}$, $1 \text{ h} = 60 \text{ min}$, $1 \text{ min} = 60 \text{ s}$

eine Zeitangabe von Jahren in Sekunden ausgedrückt werden:

2 a =
$$2 \cdot 365 \text{ d} = 2 \cdot 365 \cdot 24 \text{ h} = 2 \cdot 365 \cdot 24 \cdot 60 \text{ min}$$

= $2 \cdot 365 \cdot 24 \cdot 60 \cdot 60 \text{ s} = 63072000 \text{ s} = 63072 \cdot 10^7 \text{ s}$

Um bei Maßangaben nicht ständig mit sehr großen oder sehr kleinen Zahlen umgehen zu müssen, gibt es zwei Möglichkeiten zur Vereinfachung:

- a) Benutzung von Einheitenvorsätzen, zum Beispiel durch den Vorsatz Kilo...: $u = 40\,000\,000 \text{ m} = 40\,000 \text{ km}$ (im Alltag verwendet),
- b) Benutzung der wissenschaftlichen Schreibweise mit Zehnerpotenzen, zum Beispiel: $u = 40\,000\,000 \text{ m} = 4 \cdot 10^7 \text{ m}$ (in der Wissenschaft gebräuchlich und überall dort, wo keine Vorsätze möglich sind).

Mögliche Einheitenvorsätze sind unter anderem Nano... für 10^{-9} (zum Beispiel Nanometer), Mikro... für 10^{-6} (zum Beispiel Mikrometer, abgekürzt μ m), Mega... für 10^{6} (zum Beispiel Megahertz).

Internet-Informationssuche

www

Eine Übersicht über alle Einheitenvorsätze finden Sie bei Wikipedia unter dem Stichwort «Vorsätze für Maßeinheiten». Welche Vorsätze beschreiben die kleinsten und welche die größten Vielfachen der Grundeinheit? Im Internet finden Sie ebenfalls eine Sammlung aller physikalischen Konstanten. Diese werden von der CODATA, einer internationalen wissenschaftlichen Organisation, verwaltet.

Webseite zum Buch

Um das Rechnen mit physikalischen Gleichungen zu vereinfachen, finden Sie auf den Webseiten MATLAB/Octave- und Scilab-Dateien, die die wichtigsten Konstanten enthalten.

Die Darstellung mit Zehnerpotenzen hat in Wissenschaft und Technik einen bedeutenden Vorzug: Man kann genau so viele Stellen hinschreiben, wie es die Genauigkeit einer Messung gerade zulässt. Sie wissen ja, dass der Umfang der Erde keineswegs exakt $40\,000\,000$ m beträgt. Unsere Angabe kann deshalb allenfalls eine brauchbare Näherung darstellen. Wenn wir schreiben: $u = 4,0 \cdot 10^7$ m, dann umfasst dieser Wert alle Möglichkeiten im Bereich zwischen etwa $39\,500\,000$ m und $40\,500\,000$ m. Alle Werte, die darin liegen, lassen nach dem Runden die Schreibweise $4,0 \cdot 10^7$ m zu. Man sagt, die Angabe von u umfasse zwei gültige oder signifikante Stellen. Deshalb sollten auch Sie sich hüten, bei Ergebnissen von Zahlenrechnungen mehr Stellen anzugeben, als Sie aufgrund der vorgegebenen Ausgangswerte rechtfertigen können. Wie man genauer auf etwaige Messfehler eingeht und wie sie sich auf das Ergebnis einer Rechnung auswirken, das diskutieren wir später.

Üblicherweise werden Gleichungen so geschrieben, dass die gesamte physikalische Größe, bestehend aus Maßzahl und Maßeinheit, bei allen Zwischenschritten mitgenommen wird. Diese Gleichungen heißen deshalb *Größengleichungen*. Bei-

spielsweise hängt die Wellenlänge von Licht, λ , wie wir später sehen werden, mit seiner Energie E zusammen. Dieser Zusammenhang ist gegeben durch

$$E = h \frac{c}{\lambda}$$

wobei *c* die Lichtgeschwindigkeit ist und *h* eine physikalische Konstante, für die wir uns jetzt noch nicht näher interessieren müssen, die Plancksche Konstante. Die Energie misst man in diesem Zusammenhang meist in der Einheit Elektronenvolt (eV). Wenn wir die Werte für die beiden Größen

$$c = 2.9979 \cdot 10^8 \text{ m/s}, \ h = 4.1357 \cdot 10^{-15} \text{ eV} \cdot \text{s}$$

einsetzen, so erhalten wir

$$E = \frac{hc}{\lambda} = \frac{4,1357 \cdot 10^{-15} \,\text{eVs} \cdot 2,9979 \cdot 10^8 \,\text{m/s}}{\lambda}$$
$$= \frac{1,240 \cdot 10^{-6} \,\frac{\text{eVs} \cdot \text{m}}{\text{s}}}{\lambda} = \frac{1,240 \cdot 10^{-6} \,\text{eV} \cdot \text{m}}{\lambda}$$

Meist gibt man die Lichtwellenlänge in Nanometer (nm) an und kann dann schreiben:

$$E = \frac{1,240 \cdot 10^{-6} \,\text{eV} \cdot \text{m}}{\lambda} = \frac{1,240 \cdot 10^{-6} \,\text{eV} \cdot 10^{9} \,\text{nm}}{\lambda}$$

Daraus entsteht dann die Größengleichung

$$E = \frac{1240 \text{ eV nm}}{\lambda}$$

Setzt man hier die Wellenlänge in Nanometer ein, so kürzt sich die Maßeinheit heraus, und man erhält sofort die zugehörige Energie in Elektronenvolt.

Vereinzelt werden auch sogenannte Zahlenwertgleichungen benutzt. Diese würde man zum Beispiel in der Form schreiben:

$$E(\text{in eV}) = \frac{1240}{\lambda \text{ (in nm)}}$$

Eine Darstellung der Maßeinheiten in eckigen Klammern, wie man sie oft noch antrifft, ist unzulässig, da sie nicht der Norm entspricht. Außerdem bietet sie Anlass zu Verwechslungen.

Hinweis

Leider findet man eine solche unzulässige Schreibweise selbst in Büchern oder auch bei Wikipedia. Es ist zu hoffen, dass diese falsche Schreibweise durch die Wikipedia-Benutzergemeinde bald ausgemerzt ist. Fügen Sie vielleicht sogar selbst einmal einen Kommentar ein, wenn Sie eine derartige Darstellung bemerken!

1.3 SI-Basisgrößen

1.3.1 Länge

Ursprünglich benutzte der Mensch als Vergleichsmaß für die Länge meist körperliche Maße. Die Maßeinheiten Fuß, Elle und das englische Yard zeugen davon. Beispielsweise wurde das Yard (heute: 1 yd = 0,9144 m) mit dem Maß der Entfernung der Nasenspitze zum Daumen der ausgestreckten Hand von König Heinrich I. (etwa 1068–1135) definiert. Dabei wurde auch 1 yd entsprechend 3 Fuß festgelegt.

Erste Standardisierungsbemühungen waren allerdings schon bei den Babyloniern oder Römern vorhanden. Doch im Mittelalter, ja sogar bis ins 18. und 19. Jahrhundert, galten, je nach Region, immer noch unterschiedliche Messnormale (Bild 1.1).

Die heutige Definition des Meters geht auf die französische Revolution zurück. 1793 wurden im Zusammenhang mit einem neuen Kalender auch neue Maßeinheiten festgelegt. Das Meter als Basiseinheit der Länge sollte den 10-millionsten Teil eines Viertel Erdumfangs betragen. In diesem Fall würde dieser 40 000 000 m entsprechen. (Diese Angabe ist heute, nach verbesserten Messungen, nicht mehr völlig exakt.)

Die Festlegung des Meters über den Erdumfang war jedoch in der Folgezeit nicht mehr ausreichend. Es bestanden Zweifel, ob der Erddurchmesser hinreichend konstant ist und die Meridianvermessungen genau genug waren. Daher wurde ein Messstab aus einer Platin-Iridium-Legierung als Meternormal eingeführt (der so-

Bild 1.1 Stadttor in Speyer, das Altpörtel. An der nördlichen Seite der Durchfahrt kann man noch heute den «Speyrer Normalschuh» (Messnormal von 1773 in Form einer eisernen Klammer, 28,889 cm hoch) besichtigen.

genannte Meter-Prototyp). Auch dessen Genauigkeit genügte in der zweiten Hälfte des 20. Jahrhunderts nicht mehr den Anforderungen. Schließlich einigte man sich darauf, das Meter überhaupt nicht mehr durch ein eigenes Normal zu definieren, sondern seine Bestimmung auf die der Zeiteinheit Sekunde zurückzuführen. Bekanntlich hängen zurückgelegte Weglänge s des Lichts und seine Laufzeit t über die Lichtgeschwindigkeit c miteinander zusammen: s = ct. Durch Festlegung der Lichtgeschwindigkeit als konstante Größe (entsprechend den bis dahin bekannten präzisesten Messverfahren) wurde deshalb das Meter wie folgt definiert:

<u>(i)</u>

Definition

Das Meter ist die Länge der Strecke, die Licht im Vakuum während der Dauer von 1/299 792 458 Sekunden durchläuft. (Alle Einheitendefinitionen nach [1.2].)

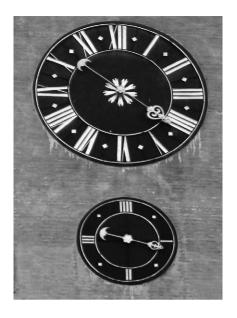
Den Zahlenwert müssen Sie sich natürlich nicht merken. Es genügt, zu wissen:

Grundsatz

Ein Meter als Basiseinheit der Länge wird durch einen bestimmten Bruchteil der Strecke definiert, die das Licht in einer Sekunde durchläuft.

Beachten Sie, dass zur Definition des Meters die Festlegung der Zeiteinheit Sekunde benötigt wird, auf die wir gleich zu sprechen kommen.

In jedem Fall ist es erforderlich, Messverfahren zu finden, mit denen die so festgelegte Länge auch bestimmt werden kann. Dazu gibt es verschiedene Möglichkeiten. Für astronomische Entfernungen greift man auf Laufzeitmessungen von
Laserstrahlen zurück. Die Entfernung von der Erde zum Mond wird beispielsweise
dadurch bestimmt, dass man einen kurzen Laserpuls zum Mond schickt. Dieser
wird von dort aufgestellten Spiegeln reflektiert (die Spiegel wurden von den Apollo-Astronauten bei ihrer Mondlandung 1969 installiert). Aus der Laufzeit dieses
Laserstrahls kann man mit Hilfe der Lichtgeschwindigkeit auf die Entfernung
schließen.


Sehr genaue Längenmessungen im Labor werden mit sogenannten Laserinterferometern durchgeführt. Mit ihnen kann man die Laserwellenlänge mit der zu messenden Länge vergleichen. In der Physikalisch-technischen Bundesanstalt wird ein jodstabilisierter Helium-Neon-Laser als Wellenlängennormal für die Realisierung des Meters eingesetzt.

Nicht nur Licht, sondern auch elektromagnetische Strahlung breitet sich mit Lichtgeschwindigkeit aus. Ein Beispiel für die praktische Bedeutung dieser Tatsache ist Ihnen sicher gut bekannt: Beim Global Positioning System (GPS) wird die Laufzeit von elektromagnetischer Strahlung für die Entfernungsmessung ausgenutzt.

1.3.2 Zeit

Die Bedürfnisse hinsichtlich der Genauigkeit der Zeitmessung haben sich im Verlauf der Geschichte erheblich gewandelt. In vergangenen Jahrhunderten reichte im Allge-

Bild 1.2 Uhr am Altpörtel in Speyer: Das obere Zifferblatt zeigt die Stunden an, das kleine darunter die Viertelstunden. Damit von weitem vor allem die Stunden gut zu erkennen sind, ist das obere Zifferblatt erheblich größer.

meinen eine Angabe der Stunden, eventuell noch der Viertelstunden (Bild 1.2). Heute werden präzise Messungen von Nano-, ja sogar von Picosekunden gefordert.

Heute wird die Sekunde auf folgende Weise definiert:

Definition

Die Sekunde ist das 9192631770-fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids ¹³³Cs entsprechenden Strahlung.

Um uns die Sache leichter zu merken, können wir festhalten:

Grundsatz

Die Sekunde wird durch die Periodendauer einer bestimmten atomaren Schwingung definiert.

Diese Definition der Sekunde wird durch eine «Atomuhr» als Sekundennormal realisiert Bild 1.3).

Internet-Informationssuche

Wie arbeiten Atomuhren bei der Physikalisch-Technischen Bundesanstalt (PTB)? Hierzu finden Sie auf den Webseiten der PTB oder bei Wikipedia nähere Informationen.

Bei einer bestimmten Resonanzfrequenz von Cäsiumatomen werden die Schwingungsperioden abgezählt. Solche Uhrennormale werden heute bereits kommerziell

Bild 1.3 Atomuhr, wie sie in einem GPS-Satelliten eingesetzt wird

angeboten, die PTB besitzt mehrere davon. Die Abweichung der Uhren untereinander beträgt nur rund 10⁻⁶ s pro Jahr. Aus dem Vergleich von 250 Uhren in etwa 50 weltweit verteilten Instituten wird eine mittlere Zeit ermittelt, die *Koordinierte Weltze*it (Coordinated Universal Time, UTC) Die Mitteleuropäische Zeit (MEZ) ergibt sich durch MEZ = UTC + 1 h. Weil sich die Erde nicht gleichmäßig dreht, müssen hin und wieder Schaltsekunden eingefügt werden, um die Übereinstimmung der «Atomzeit» mit der astronomischen Zeit sicherzustellen.

Die dieser Zeit entsprechenden Sekundenintervalle werden auf verschiedenen Wegen verbreitet, beispielsweise über den Langwellensender in Mainflingen bei Frankfurt. Er erzeugt das Zeitsignal DCF77, dieses wird in codierter Form auf einer Langwellenfrequenz ausgestrahlt. So stellt es die Grundlage für die Zeitangaben der Rundfunk- und Fernsehstationen, der Uhren der Deutschen Bahn AG und so weiter bis hin zu den privaten Funkuhren dar.

www

Internet-Informations suche

Informationen zum Zeitsignalsender erhalten Sie im Internet unter verschiedenen Adressen, zum Beispiel bei der PTB oder bei Wikipedia unter dem Stichwort DCF77.

Auch über das öffentliche Telefonnetz und das Internet (Bild 1.4) werden Zeitsignale übertragen. Die Genauigkeit der Anzeige über das Internet liegt, bedingt durch den komplizierten Übertragungsweg, allerdings nur im Sekundenbereich.

1.3.3 Masse

Ursprünglich war das Kilogramm als Masse von Wasser in einem Volumen von $1 \text{ dm} \cdot 1 \text{ dm} \cdot 1 \text{ dm} = 1$ Liter definiert (daher ist der Dichtewert von Wasser 1 kg/dm^3). Als Basis der Masse war allerdings zunächst das Gramm vorgesehen. Bereits seit 1799 wurde jedoch in Frankreich ein Platinzylinder als Massenprototyp ge-

Bild 1.4 Anzeige des Zeitservers der PTB im Internet [1.3]

wählt. Wegen dessen Größe wurde dann für die Basiseinheit das Kilogramm festgelegt. Die Masse ist derzeit immer noch über einen solchen Prototypen definiert. Allerdings verwendet man heute eine Platin-Iridium-Legierung. In Bild 1.5 ist der internationale Kilogramm-Prototyp dargestellt, der sich in Sèvres bei Paris befindet. Der nationale Kilogramm-Prototyp der Bundesrepublik Deutschland steht in der Physikalisch-Technischen Bundesanstalt und wird etwa alle zehn Jahre mit dem internationalen Kilogramm-Prototypen verglichen.

Die formale Definition der Masseneinheit, die Sie sich auch gut merken können, lautet:

Definition

Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.

Die einzelnen nationalen Kilogramm-Prototypen weichen allerdings zunehmend voneinander ab. Daher gibt es schon seit längerer Zeit Überlegungen zur Neudefinition des Kilogramms. Wie bei der Längeneinheit ist man bestrebt, die Einheit der Masse auf eine Fundamentalkonstante zurückzuführen. Die Masse einzelner Atome, zum Beispiel von Silizium, ist aus verschiedenen Messungen recht genau bekannt. Könnte man die Atome in einem makroskopischen Volumen sehr genau

Bild 1.5 Internationaler Kilogramm-Prototyp am Bureau International des Poids et Mesures (BIPM) in Paris

(i)

auszählen (es sind etwa 10²³), hätte man auch ein genaues Maß für die Masse. Doch im Moment ist dieses Auszählen noch zu ungenau, um die bisherige Definition zu ersetzen.

www

Internet-Informationssuche

Zu den Versuchen, die Massenbestimmung neu festzulegen, können Sie neuere Informationen in der Zeitschrift *Physik in unserer Zeit*, Heft 4/2008, Seite 164, erhalten oder auf den Webseiten der PTB.

Die Massen verschiedener Körper sind über einen sehr weiten Bereich verteilt – viele Zehnerpotenzen liegen dazwischen. Zum Vergleich: Die Masse des freien Elektrons beträgt $m_0 = 9,109 \cdot 10^{-31}$ kg, die Masse der Erde: $m_{\rm E} = 5,98 \cdot 10^{24}$ kg. Die Masse der Sonne beträgt $1,989 \cdot 10^{30}$ kg, die der gesamten Galaxis etwa 2000 Milliarden Sonnenmassen.

Solche Zahlenwerte sagen einem meist nicht viel, wahrscheinlich hätten Sie als Massenangabe des freien Elektrons auch einen Wert mit der Zehnerpotenz 10⁻¹⁸ geglaubt! Deshalb ist das Vertrautsein mit physikalischen Größen wichtig. Beim Umgang mit noch unbekannten physikalischen Größen sind deshalb manchmal Vorsicht und kritisches Hinterfragen geboten.

1.3.4 Stoffmenge

Die Definition der Stoffmenge wurde ursprünglich in der Chemie festgelegt. Sie wird benötigt, weil in chemischen Reaktionen jeweils einzelne Moleküle oder Vielfache davon miteinander reagieren. Dieser Sachverhalt trifft ebenso im makroskopischen Maßstab zu. Aber auch bei physikalischen Prozessen benötigt man Angaben zur Stoffmenge. Ihre Einheit ist das Mol. Seine formale Definition lautet:

Definition

Das Mol ist die Stoffmenge eines Systems, das aus ebenso vielen Einzelteilchen besteht, wie Atome in 0,012 Kilogramm des Kohlenstoffnuklids ¹²C enthalten sind. Bei Benutzung des Mol müssen die Einzelteilchen spezifiziert sein und können Atome, Moleküle, Ionen, Elektronen sowie andere Teilchen oder Gruppen solcher Teilchen genau angegebener Zusammensetzung sein.

Praktisch bedeutet das, ein Mol (Angabe als Maßeinheit: mol) ist eine Menge aus einer bestimmten Anzahl von Teilchen. Wie viele das sind, wird mit der $AVOGADRO-Konstante\ N_A$ ausgedrückt. Beispielsweise werden bei Kohlenstoff (Atommasse 12 u) die Anzahl der Teilchen in 12 g zugrunde gelegt. Es sind $6,022 \cdot 10^{23}$ Teilchen. Beim leichtesten Element, dem Wasserstoff, ergibt diese Menge gerade 1 g.

Besser als die formale Definition können Sie sich aber die folgende Formulierung merken:

Grundsatz

Ein Mol entspricht $\{N_A\} = 6,022 \cdot 10^{23}$ Teilchen; $N_A = 6,022 \cdot 10^{23}$ mol⁻¹.

(i)

1.3.5 Weitere SI-Basisgrößen

Außer den bereits vorgestellten physikalischen Basisgrößen, die zunächst für die Mechanik wichtig sind, sollen zusätzlich die elektrische Stromstärke, die Temperatur und die Lichtstärke genannt werden. Den physikalischen Zusammenhang dieser Größen wollen wir später im Einzelnen vorstellen.

Alle SI-Basisgrößen und ihre Einheiten sind in Tabelle 1.1 zusammenfassend aufgelistet.

In der Informationstechnik sind als Maßeinheiten für Informationsmengen und Speicherkapazitäten seit jeher die Bezeichnungen Bit und Byte in Gebrauch. Die zugehörigen Einheitenvorsätze Kilo-, Mega- usw. sind auch hier üblich. Allerdings verstand man im Allgemeinen unter einem Kilobit nicht 10^3 Bit (1000 Bit), sondern 2^{10} Bit (1024 Bit). Ein Megabit sind dann 2^{20} Bit und so fort. Die Einheitenvorsätze werden also mit Potenzen der Zahl 2 verbunden. Dies führte oftmals zu ungewollten oder sogar gewollten Missverständnissen, denn ein Speicherbaustein mit 10^3 Bit ist natürlich etwas kleiner als einer mit 2^{10} Bit; beide werden jedoch oft als Kilobit bezeichnet. Daher versuchte man, auch die Informationseinheiten und ihre Vorsätze auf neue Weise gesetzlich festzulegen (Tabelle 1.2). Seit Dezember 1998 sind sie international genormt (IEC 60 027-2), haben sich aber im allgemeinen Sprachgebrauch bisher noch nicht durchgesetzt. [1.1]

Große	zeichen	Abkürzung	Anomalione Bomillon del Emilion daron in
		Meter (m)	einen bestimmten Bruchteil der Strecke, die das Licht in einer Sekunde durchläuft
Masse	m	Kilogramm (kg)	die Masse des internationalen Kilogrammprototyps
Zeit	t	Sekunde (s)	die Periodendauer einer bestimmten atomaren Schwingung
Stoffmenge	menge n Mol (mol)		die jeweils gleiche Menge von Teilchen, Vergleichssubstanz ist das Kohlenstoffisotop 12 C. Ein Mol entspricht $\{N_A\} = 6,022 \cdot 10^{23}$ Teilchen.
elektrische Stromstärke	1	Ampere (A)	die Kraft, die ein konstanter elektrischer Strom, der durch zwei parallele Leiter fließt, hervorrufen würde
Temperatur	T	Kelvin (K)	den 273,16ten Teil der thermodynamischen Temperatur des «Tripelpunktes» (etwa bei 0°C) von Wasser
Lichtstärke I _V Candela (cd)		Candela (cd)	die vom Auge empfundene Lichtstärke einer Strahlungsquelle einer bestimmten Frequenz in einer

Formel- Name der Einheit. Anschauliche Definition der Einheit durch ...

Tabelle 1.1 SI-Basisgrößen

Größe

Tabelle 1.2 International festgelegte Einheiten der Informationstechnik

Name der Einheit, Abkürzung	Definition der Einheit
Bit (bit)	Einheit der Informationskapazität (dimensionslos)
Byte (B, b, byte)	1 byte = 8 bit
Baud (Bd)	Modem-Datenübertragungsrate 1 Bd = 1 bit/s

Richtung; sie entspricht einer festgelegten physikalischen Strahlstärke (gemessen in Watt pro Steradiant)

Hinweis

Die ISO – International Organization for Standardization (Internationale Organisation für Normung) arbeitet zusammen mit der IEC – International Electrotechnical Commission (Internationale Elektrotechnische Kommission).

Die Vielfachen der Basiseinheiten haben etwas ungewöhnlich klingende Bezeichnungen:

- □ 1 Kibit (kibibit) = $(2^{10})^1$ bit = 1024 bit, dagegen 1 kbit (Kilobit) = $(10^3)^1$ bit = 1000 bit («kibi» steht für «Kilobinary» usw.),
- \square 1 MiB (mebibyte) = $(2^{10})^2$ B, dagegen 1 MB (Megabyte) = $(10^3)^2$ B,
- \square 1 GiB (gibibyte) = $(2^{10})^3$ B, dagegen 1 GB (Gigabyte) = $(10^3)^3$ B.

1.4 Abgeleitete Größen

Wichtige physikalische Größen der Mechanik sind beispielsweise Geschwindigkeit, Volumen, Winkel, Dichte. Da sie sich durch Multiplikation oder Division aus entsprechenden Basisgrößen ermitteln lassen, müssen ihre Einheiten nicht durch Normale festgelegt werden. Im Folgenden greifen wir einige Größen heraus.

☐ Geschwindigkeit

Die Geschwindigkeit haben wir bereits in Abschnitt 1.1 definiert als v = s/t Als Maßeinheit ergibt sich m/s. Die maximal erreichbare Geschwindigkeit ist die Lichtgeschwindigkeit c. Sie kann als $c = 2,998 \cdot 10^8$ m/s oder, unter Verwendung negativer Zehnerpotenzen, $c = 2,998 \cdot 10^8$ ms⁻¹ geschrieben werden.

□ Volumen

Als Volumen eines Körpers bezeichnet man bekanntlich die Größe des von einem Körper umschlossenen Raumes. Es hat immer die Dimension «Länge hoch 3», also

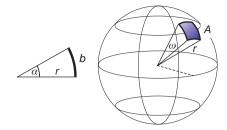
$$[V] = [l^3] = m^3$$

Anhand der bekannten Formeln für die Volumenberechnung typischer Körper können Sie das leicht nachvollziehen:

- Würfel $V = l^3$, Quader V = abc

- Zylinder
$$V = \pi r^2 h$$
, Kugel $V = \frac{4}{3}\pi r^3$

In allen Fällen ergibt sich die Maßeinheit Meter hoch drei, m³.


□ Winkel

Der *ebene Winkel* ist definiert als Verhältnis von Kreisbogen zu Radius (Bild 1.6):

$$\alpha = \frac{b}{r} \tag{Gl. 1.2}$$

Aus der Formel ist ersichtlich, dass α dimensionslos ist ($[\alpha] = [b]/[r] = m/m = 1$). Da eine Maßeinheit «1» in der Praxis nicht viel Sinn ergibt, definiert man als Maßeinheit für den ebenen Winkel den Radiant (Abkürzung «rad»). Man

Bild 1.6 Zur Definition des ebenen (links) und des räumlichen Winkels (rechts)

spricht vom «Bogenmaß». Für praktische Angaben wird nach wie vor die Einheit Grad (°) als zulässig und sinnvoll angesehen:

$$\left\{\alpha_{\text{Grad}}\right\} = \frac{180^{\circ}}{\pi} \left\{\alpha_{\text{rad}}\right\} \tag{Gl. 1.3}$$

(Vorsicht beim praktischen Rechnen – allzu oft wird vergessen, den Taschenrechner auf Radiant umzustellen, wenn im Bogenmaß gerechnet wird.)

 $Raumwinkel\ \omega$ werden analog in Steradiant (Abkürzung «sr») angegeben. Sie sind definiert durch das Verhältnis von Kugelkalotte (Fläche des Kugelausschnitts) zu Radiusquadrat:

$$\omega = \frac{A}{r^2} \tag{Gl. 1.4}$$

☐ Weitere physikalische Größen

Viele in der Praxis gebräuchliche Größen haben eigene Bezeichnungen. Beispielsweise wird für die häufig benötigte Maßeinheit der Frequenz, das heißt die Zahl der Schwingungen pro Zeitintervall, das Hertz (Hz) verwendet. Sie ist der Kehrwert der Schwingungsdauer und besitzt deshalb die Dimension s⁻¹. Einige solcher Maßeinheiten sind in Tabelle 1.3 aufgeführt. Diese und weitere Einheiten werden uns noch im Laufe dieses Buches begegnen.

Für die Praxis ist die Einführung jeweils eigener Einheiten sehr bequem. Einige Physiker fanden diese vielen speziellen Bezeichnungen doch etwas übertrieben. Um darauf hinzuweisen, schlugen sie deshalb scherzhaft vor, die Einheit der Durchflussmenge von Flüssigkeiten, in Anlehnung an die Hauptfigur in Verdis gleichnamiger Oper, «Falstaff» zu nennen. (Falstaff ist darin der Held, der dem Genuss und insbesondere dem Weintrinken nicht abgeneigt ist.)

T 1 11 4 2	T 1 1	1	1 101	-11 -	•	N (() 1 1 1.
Tabelle 1.3	Finiae abae	leitete (+roisei	n der Phy	veik mit	eigenen	Maßeinheiten
rabene 1.5	Lininge abge	icitete Gioise	II UCI I II	y SIIK IIIIL	CISCIICII	TVIAISCIIIIICITCII

Physikalische Größe	Formel- zeichen	Name der Einheit, Abkürzung	Definition der Einheit (Relation zu anderen Einheiten)
Frequenz	f	Hertz (Hz)	$1 \text{ Hz} = 1/\text{s} = \text{s}^{-1}$
Kraft	F	Newton (N)	1 N = 1 kg m/s ²
Druck	р	Pascal (Pa)	1 Pa = 1 N/m ²
Energie	W (E)	Joule (J)	1 J = 1 Nm
Leistung	P	Watt (W)	1 W = 1 J/s
elektrische Spannung	U (V)	Volt (V)	1 V = 1 W/A
elektrischer Widerstand	R	Ohm (Ω)	1 Ω = 1 V/A
Kapazität	С	Farad (F)	1 F = 1 As/V
Induktivität	L	Henry (H)	1 H = 1 Vs/A

1					
Phys. Größe	Name	Symbol	Wert in SI-Basiseinheiten		
Zeit Minute		min	1 min = 60 s		
	Stunde	h	1 h = 60 min = 3600 s		
	Tag	d	1 d = 24 h = 86 400 s		
Ebener Winkel	Grad	0	$1^{\circ} = (180/\pi) \text{ rad}$		
	Winkelminute	′	$1' = (1/60)^{\circ} = (3/\pi) \text{ rad}$		
	Winkelsekunde	"	$1'' = (1/60)' = (1/20\pi)$ rad		
Volumen	Liter	I	1 l = 1 dm ³ = 10 ⁻³ m ³		
Energie	Elektronenvolt	eV	1 eV = 1,602 18 · 10 ⁻¹⁹ J		

Tabelle 1.4 Ausgewählte nicht dekadische sowie systemfremde Einheiten, die innerhalb des SI akzeptiert werden

www

Internet-Informationssuche

Eine Liste sehr vieler physikalischer Größen mit ihren Maßeinheiten finden Sie bei Wikipedia.

Die Darstellung einer physikalischen Größe als Produkt aus Maßzahl und Maßeinheit, nämlich in der Form

$$u = \{u\} [u]$$

erlaubt das Schreiben von Gleichungen für die Maßeinheiten allein, zum Beispiel [f] = [1/T] = 1/s = Hz. Es bereitet auch keine Schwierigkeiten, sogenannte systemfremde Einheiten in der Rechnung mitzuführen (Tabelle 1.4). Vorzugsweise in der Mikrophysik benutzen die Physiker zum Beispiel als Energieeinheit das Elektronenvolt.

In angelsächsischen Ländern verwendet man im Alltag noch eine Reihe von Einheiten, die nicht SI-konform sind. Hierzu gehört beispielsweise die Längeneinheit Zoll (engl. *inch*, Einheitenzeichen " oder in, dabei ist 1" = 1 in = 25,4 mm). Welche Komplikationen die Verwendung inkompatibler Maßeinheiten mit sich bringen kann, wurde bereits zu Beginn dieses Kapitels im Zusammenhang mit der amerikanischen Marssonde *Mars Climate Orbiter* erwähnt.

1.5 Bedeutung des Einheitensystems für die Praxis

Die Verwendung des SI, bei dem die Maßeinheiten verschiedener physikalischer Größen ohne komplizierte Umrechnungsfaktoren auseinander hervorgehen, bringt in der Praxis große Vereinfachungen mit sich. Sie erkennen das schnell anhand der wenigen Beispiele, in denen dies nicht realisiert ist, wie bei der Umrechnung von Stunden in Minuten, bei der stets umständlich mit einem Faktor 60 zu multiplizieren ist. In den meisten anderen Fällen gehen die verschiedenen SI-Größen unmittelbar auseinander hervor. Sofern man alle physikalischen Größen in ihren SI-Grundeinheiten angibt, also auch auf Vorsätze wie Mega-, Milli- und so weiter verzichtet, könnte man demnach beim Rechnen auf das Mitschleppen der Maßeinheiten verzichten. Man weiß ja, dass sich immer wieder die richtige SI-Einheit ergibt. Es empfiehlt sich jedoch trotzdem, alle Gleichungen konsequent als Größenglei-