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PREFACE

This book contains the lecture notes of the Advanced School “Vor-
tices and Turbulence at Very Low Temperatures” organised at CISM,
Udine, in July 2007. What motivated us in organising the school was
the recent experimental and theoretical progress in the study of tur-
bulence at very low temperatures near absolute zero using liquid and
gaseous helium.

The aim of the school was to make more known to young turbu-
lence researchers that the physical properties of helium allow exper-
imenters to achieve extreme turbulence intensities, as measured by
Rayleigh or Reynolds numbers. The second piece of information which
we wanted to advertise is the observed striking similarity between
ordinary turbulence and quantum turbulence (that is, turbulence in
superfluid helium, in which the vortices are quantised). Quantum
turbulence may thus represent a simplified version of the formidable
turbulence problem.,

Why the meed to advertise these results ¢ It is apparent that
the problem of low temperature turbulence is at the intersection of
physics communities which, normally, would not normally communi-
cate much with each other: fluid dynamicists (who better understand
the aspects of turbulence), low temperature physicists (who know the
techniques to handle liquid helium) and atomic physicists (who can
create quantised vortices in ultra-cold, Bose-FEinstein condensed atomic
gases). The school which we organised was thus an attempt to lower
barriers between disciplines and stimulate young researchers with dif-
ferent backgrounds.

We are grateful to our colleagues Natalia Berloff, Shaun Fisher,
Joe Niemela and Ladik Skrbek who gave the lectures on vortices and



low temperature turbulence collected in this book. We are indebted
to Professor Katepalli Sreenivasan who gave an exciting presentation
of new experimental techniques to visualise liquid helium. We would
like to thank CISM for hosting this event, in particular Cara Toros
and the staff who helped with the day-to-day organization, Professor
Paolo Serafini for the editorial activity, and CISM’s Rector Professor
Giulio Maier. Finally, we are grateful to Professor Alfredo Soldati for
encouraging us in pursuing the idea of this advanced school.

Carlo Barenghi and Yuri Sergeev
Newcastle University

Newcastle upon Tyne, UK
January 2008
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Introduction to quantised vortices and
turbulence

Carlo F. Barenghi*

School of Mathematics and Statistics, Newcastle University,
Newcastle upon Tyne, U.K.

Abstract This chapter contains an introduction to liquid helium,
the two—fluid model, quantised vortices and quantum turbulence.
The last section gives a flavour of current research on quantum
turbulence. At the end of the chapter a number of exercises test
the reader’s own understanding.

1 Liquid helium

1.1 The race toward absolute zero

During the XIX century physicists developed the science of thermody-
namics and understood that there is a limit to the degree of cold which is
possible. The temperature scale which starts from this limit is called the
Kelvin scale of temperatures. One Kelvin degree is equal to one degree
on the usual Centigrade scale, and absolute zero, T' = 0 K, corresponds
to T' = —273.15 C. Physicists found that if the temperature is reduced
there is less thermal disorder, thus the fundamental properties of matter
become more apparent. Low temperature physics laboratories competed
against each other, racing toward absolute zero, and attempted to liquefy
all known gases, thus cooling matter to lower and lower temperatures. Oxy-
gen become liquid at 7" = 90 K. Nitrogen required 77 K. In 1898 Dewar
succeeded in liquefying hydrogen at T'= 20 K. The only gas which resisted
being liquefied was helium. Although helium is the second most common
element in the Universe, it was identified only in the XIX century, first in
the spectrum of solar radiation and then, by Ramsay, in rocks containing

*T am grateful to CISM for organizing the Advanced School on Vortices and Turbulence
at Low Temperatures and for supporting the publication of these lecture notes. I also
wish to thank Professor Alfredo Soldati for encouraging this Advanced School, and to
Professor Yuri Sergeev for reading my manuscript. I also acknowedge the support of
EPSRC, grants GR/T08876/01 and EP/D040892/1.



2 Carlo F. Barenghi

uranium. It was only in 1908 that Onnes succeeded in creating the first
sample of liquid helium at T' = 4 K. Few years later, in 1911, Onnes discov-
ered superconductivity, the ability of some metals (e.g. mercury, tin, lead)
and alloys to sustain electrical currents without any electrical resistance.

1.2 Engineering applications

Today the main practical application of liquid helium is cryogenic cool-
ing. If we want to measure the low temperature properties of a substance
(e.g. the specific heat or the thermal conductivity) it is necessary to cool a
sample of that substance; the best way to extract heat it from the sample is
to immerse it into a liquid, so that the area of thermal contact is maximised.
At temperatures of few Kelvin degrees, the only existing liquid is helium:
any other substance is solid.

A common application of helium is cooling superconducting magnets.
The coils of these magnets are made of alloys which become superconducting
if the temperature is less than a critical value. Superconducting magnets
are routinely used in hospitals to make scans. They are also used in high
energy physics laboratories to accelerate beams of elementary particles. An
example is CERN’s Large Hadron Collider. Along the 27 km long ring of
the LHC there are more than one thousand superconducting magnets; to
provide a magnetic field strength of 80,000 Gauss, each magnet is held at
the operating temperature of 7= 1.8 K. Liquid helium is also used by
astrophysicists to cool infrared detectors; for example, the IRAS satellite
carried 720 litres of liquid helium held at 7= 1.6 K.

1.3 Helium I and helium II

Figure 1.3.1 shows the typical phase diagram (pressure versus tempera-
ture) of an ordinary substance. In the diagram, the triple point marks the
co-existence of gas, liquid and solid phases. The first experiments which
investigated the properties of liquid helium were performed by Onnes and
Dana in Leiden. Onnes and Dana found that liquid helium is transparent
and has density equal to approximately 1/6 of water’s. They also noticed
that, upon cooling the liquid helium by pumping on its vapour, the bub-
bling ceased when helium’s temperature dropped below a critical value of
approximately 2 K. Motivated by this strange effect, which suggests that
some physical transformation takes place, Onnes and Dana measured he-
lium’s specific heat, C'. They found that the temperature dependence of
C has a remarkable peak at the same critical temperature 2 K. From the
shape of the specific heat curve, they called T this critical temperature.
The value of T on the current temperature scale is T\ = 2.1768 K at
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saturated vapour pressure (SVP).

Solid

Liquid

Pressure

Critical
point
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Figure 1.3.1. Phase diagram of an ordinary substance.
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Figure 1.3.2. Phase diagram of liquid helium.

Soon it became clear that the properties of liquid helium above and
below T are very different. The low temperature liquid phase of helium
was called helium IT to distinguish it from the high temperature liquid phase
called helium I. Figure 1.3.2 shows the phase diagram of liquid helium. Note
the absence of a triple point and the fact that helium remains liquid down
to absolute zero. To obtain solid helium, a pressure of about 25 bars must
be applied. The boundary between helium I and helium IT is called the
lambda line; the intersection of the lambda line with the saturated pressure
curve (along which most experiments are performed) is the lambda point.
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The most striking property of helium II is superfluidity, which is the
ability to flow without any viscous dissipation. Superfluidity was discov-
ered independently by Kapitza and Allen in 1938, for which Kapitza was
awarded the Nobel prize. Following the discovery of superfluidity, further
experiments revealed that the flow of helium II has more strange proper-
ties if compared to the flow of ordinary liquids (including helium I). It was
only in the 1940’s that Landau and Tisza developed a theory, called the
two—fluid model, which accounts for the observed flow of helium II, at least
at small velocities. Landau was awarded the Nobel prize for his work on
superfluidity. A prediction of the two—fluid model was an unusual mode of
oscillation called second sound, which was observed by Peshkov in 1941.

In the 1940’s, experiments on the rotational motion of helium IT re-
vealed more surprises. The quantisation of the circulation, predicted by
Onsager (1948) and Feynman (1955), both Nobel prize winners, explained
these experiments. The quantum of circulation was first observed by Vinen
in 1961. Vinen also performed the first experimental investigations of quan-
tum turbulence. Quantum turbulence limits the otherwise ideal properties
of helium IT to transfer heat, so it is important in the engineering appli-
cations of liquid helium. Current research in helium II is concerned with
the similarities and difference between classical turbulence and quantum
turbulence.

1.4 “He and *He

The nucleus of ordinary helium (*He) consists of two protons and two
neutrons. Naturally occurring helium gas contains a small fraction (approx-
imately 1 part in 107) of the rare isotope *He, whose nucleus contains only
one neutron. In 1972 Richardson, Lee and Osheroff were awarded the Nobel
prize for the discovery that pure liquid *He becomes superfluid too, but at
much colder temperatures (of the order of few milliKelvins) than *He.

1.5 Bose—Einstein condensation

The fundamental physical mechanism which is responsible for superflu-
idity is Bose — Einstein condensation (BEC), see Pethick and Smith (2001).
Here it suffices to say that, according to quantum mechanics, a particle has
also a characteristic wavelength, A\, associated with its momentum, p. In
an ordinary gas, A is much smaller than the average separation between
the atoms, d. If the temperature is reduced, A\ increases. At some critical
temperature T, A becomes of the order of d. In 1924 Bose and Einstein
considered a sistem of bosons (particles with integer spin) and realized that,
if the system consists of bosons, at this critical temperature it undergoes a
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phase transition, which corresponds to condensation in momentum phase.
It was only in 1938 that London noticed that BEC is relevant to the super-
fluidity of liquid helium.

In the case of ®He, the nucleus is not a boson (it has semi-integer spin),
but paired atoms form Cooper pairs which are bosons and undergo BEC.

The study of BEC was greatly boosted by Wiemann, Cornell and Ket-
terlee’s. They discovered BEC in trapped, ultra—cold alkali atoms in 1995,
for which they were awarded the Nobel prize.

2 Two—fluid model

2.1 Thermal and mechanical effects

Early experiments showed that the motion of helium II has unusual
properties. For example, consider a vessel A which contains helium and is
linked to the helium in the bath B via a superleak S, as in Figure 2.1.1 left.
A superleak is a very small hole (or holes); it can be realized, for example,
by filling a channel with very fine powder, so fine that any ordinary fluid
could not go through it. It was found that heating the helium in A with a
resistor induces not only a temperature difference AT = T4 — T, but also
a flow from B to A through the superleak S, hence a pressure difference Ap,
which is proportional to the height difference between the liquid in A and
the liquid in B. This pressure difference can be large enough to create a small
fountain, if A is open at the top (fountain effect). Note that the velocity
(into A) opposes the flow of entropy (out of A), unlike what happens in an
ordinary fluid.

Figure 2.1.1. Left: thermo-mechanical effect. Right: mechano—thermal
effect.

A second unusual effect, discovered by Daunt and Mendelsson and shown
in Figure 2.1.1 right, is the following. If the vessel A is lifted above the bath
B and helium flows out of the superleak S, the temperature in A increases,
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whereas the temperature is B decreases. This phenomenon is called the
mechano—caloric effect.

Careful measurements by Kapitza of the chemical potential p revealed
that in these experiments p remains the same in A and B: p(pa,Ta) =
w(pp,Tp). Since du = —sdT + dp/p, where s is the specific entropy, we
conclude that

Ap = psAT, (2.1.1)

In another set of experiments it was found that helium’s viscosity, 7,
seems to change at T' < T), depending on how it is measured.

T, T
4 AN
—>
T Ap j R
o

Figure 2.1.2. Left: the viscosity 7, determined from the measurement of
the pressure drop in a thin pipe, is discontinuous when plotted versus the
temperature 7. Right: if 7 is determined from the damping of an oscillating
disk, it is continuous with T'.

If the viscosity is measured by pushing helium along a capillary using bellows
and detecting the pressure gradient along the channel, then n = 0 within
experimental accuracy (see Figure 2.1.2 left). If the viscosity is measured
by observing the damping of an oscillating disk, then 1 # 0 (see Figure 2.1.2
right).

2.2 Landau’s equations

The apparently paradoxical results described in the previous subsection
are explained by the two-fluid model of Landau and Tisza, see Landau and
Lifshitz (1987) and Donnelly (1991). In this model, helium II is described
as the intimate mixture of two fluids: the superfluid and the normal fluid.
The first is related to the quantum ground state, and has zero viscosity
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and entropy. The second consists of thermal excitations and carries the
total viscosity and entropy of the liquid. Each fluid has its own velocity
and density fields, vy and ps for the superfluid and v,, and p, for the
normal fluid; the total density of helium II, p = p,, + ps, is approximately
temperature independent. The table below summarises the two—fluid model:

component | velocity density viscosity —entropy
normal fluid Va Pn n s
superfluid Vs Ps 0 0

The two—fluid model accounts for the experimental observations. The
superleak S is so small that the viscous normal fluid cannot move through
it: only the superfluid flows through S. The observation that the chemical
potential is constant across S both in the steady state (when vy = 0 in the
superleak) and during transients (when vs; # 0) led Landau to postulate
that gradients of the chemical potential are responsible for the acceleration
of the superfluid.

~
<>

<> 3

| T 0

— > X
w

Figure 2.2.1. Penetration depth.

The relative proportion of superfluid and normal fluid at a given tempera-
ture was determined by Adronikashvili. He used the fact that the motion
of an oscillating boundary penetrates into a viscous fluid only a distance
of the order of /2v/w, where v = n/p, v is the kinematic viscosity, n the
viscosity, and w the angular frequency of the oscillation - see Figure 2.2.1.

Adronikashvili’s apparatus, shown schematically in Figure 2.2.2, was a
special pendulum which consisted of a suspended stack of disks. Let Az be
the distance between the disks. If Az < § = 1/2n/(pnw) the normal fluid
is trapped between the disks and contributes to the moment of inertia of
the pendulum, whereas the superfluid does not contribute (being inviscid,
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A7<< §

i =

Figure 2.2.2. Adronikashvili’s pendulum.

it moves freely between the disks). By measuring the damping rate of
the torsional oscillations, Adronikashvili determined the ratios ps/p and
pn/p as functions of the temperature T', which are shown schematically
in Figure 2.2.3. Note that if the temperature is reduced the normal fluid
fraction p,,/p decreases rapidly; below T ~ 0.7 K the normal fluid can be
neglected.

temperature T,

Figure 2.2.3.

The mathematical formulation of the two—fluid model consists of the
equations of mass and entrophy conservation, and the equations of momen-
tum conservation of the normal fluid and the superfluid, respectively. These
equations are

0
a_i +V- (pnvn + psvs) = 0; (221)
903) L5 (psva) =0, (2.2.2)
ot
avn 1 /08 Ui 2
— + (v, Vv, = —=Vp— —=sVT + —V?v,, (2.2.3)

ot T Pn Pn
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vy
ot

1
+ (vs-V)vs = —/—)Vp + sVT. (2.2.4)

Equation 2.2.2 states that entropy flows with the normal fluid. Note that,
in isothermal conditions, the superfluid obeys the classical Euler equation,
and the normal fluid obeys the classical Navier—Stokes equation.

Finally Landau recognised that, since v is proportional to the gradient of
the phase of a quantum mechanical wavefunction, we must also have

V x vy =0. (2.2.5)

It must be stressed that Equation (2.2.3) and (2.2.4) are valid only at
small velocities. In the presence of quantised vortices Landau’s equation
require modifications.

2.3 The spectrum of elementary excitations

The normal fluid consists of thermal excitations of energy € and momen-
tum p. Landau showed that the shape of the dispersion curve € = €(p),
where p = |p|, is responsible for the superfluid nature of helium II. Lan-
dau’s spectrum, confirmed by neutron scattering experiments, is shown in
Figure 2.3.1. Note the minimum at momentum py and energy A. The
excitations at low p (linear part of the spectrum) are called phonons; the
excitations in the quadratic region near the minimum of the dispersion curve
are called rotons.

phonons

rotons

0 D, P

Figure 2.3.1. Landau’s spectrum of the excitations. Note the roton mini-
mum at (pg, Ag).
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Landau’s argument for superfluidity is the following. Consider an object
(e.g. an ion) of mass m moving with momentum p; = mV; and energy
F4 which creates an excitation of energy € and momentum p changing its
own energy and momentum to Fy and ps. Conservation of energy and
momentum requires Fq1 = Fs + € and p1 = p2 + p, hence

1
Pipcosf = me + §p2, (2.3.1)

where @ is the angle between p; and p. Thus the object can lose energy
and create an excitation if the initial velocity satisfies

P € €
Vi>—+-=~-. 2.3.2
! 2m * p p ( )
Let us minimise this velocity ¢/p:
d <e> 1 1 de
- _ :_ie_}_f—zo_ 233
dp \p p*  pdp (2.33)
We find: p
€ €
— = . 2.3.4
b p (2.34)

The minimum of €/p thus corresponds to the line from the origin to a point
slightly to the right of (po, A) on the dispersion curve; the critical velocity is
Vi =V, =58 m/s (at SVP). In conclusion, at sufficiently low temperature
such that the normal fluid is negligible, we expect the ion to experience no
drag for 0 < V1 < V.

At SVP, an ion moving in liquid helium creates a vortex ring at veloc-
ity smaller than V.. Fortunately, at higher pressures the velocity of roton
creation is smaller than the velocity required to create a vortex ring, and
Landau’s argument can be tested directly, as done by Allum et al. (1977).

3 Consequences of the two—fluid model

3.1 Second sound

The existence of two separate fluid components has a striking conse-
quence on the oscillatory motion of helium II. Let us consider helium at
rest (vp,0 = 0, veo = 0) with density po = pso + pno, pressure po, temper-
ature Tp and entropy so. We introduce small perturbations (indicated by
primed quantities) p = po + o', pn = puo + Pl Ps = Pso + Ps; Vi = Vi,
ve =V, p=po+p,T =Ty+T and s = 59 + §'; neglecting quadratic
terms in the perturbations, Landau’s equations become
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dp’ / /

o + pnoV - v, + psoV - v, =0, (3.1.1)
s’ op'

pogy + soa—’; + posoV -V, =0, (3.1.2)
v’ 1 s
—gt" - —%Vp' - _Z ZSQVTI, (3.1.3)
ov’ 1
a‘;s = = VP pso VT (3.1.4)

In writing these equations we have neglected the viscous term nV>2uv,, be-
cause we know already that its effect is to damp any motion. Assuming the
solution in the form e™(#=%/¢) we find two values for the phase speed c:

¢ = <g—’;)0, (3.1.5)

2
Ps05510
o = . 3.1.6
27\ paoCv (8.1.6)

We conclude that there are two modes of oscillation. The first mode is
a pressure and density wave at (almost) constant temperature and entropy,
in which v,, and vg move in phase. In analogy with ordinary sound, we
call this mode first sound. The second mode is a temperature and entropy
wave at (almost) constant pressure and density, in which v,, and vy move
in anti-phase. We call this mode second sound. The speed of first sound
is ¢; = 200 m/s at all temperatures; the speed of second sound, co, is
approximately ten times less, and drops to zero as T — T).

It is interesting to notice that in second sound temperature perturbations
obey the wave equation

0T’
ot?

whereas in ordinary fluids (e.g. helium I) they obey the heat equation

~ VAT,

o1’

— 2T/.
5 A
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3.2 Thermal counterflow

Another consequence of the existence of two fluids is the unusual form of
heat transfer. Consider Figure 3.2.1. A closed channel is open to the helium
bath at one end; a resistor, placed at the closed end, dissipates a known heat
flux Q. This heat flux is carried away by the normal fluid, v, = Q/(pST).
With the channel being closed, the mass flux is zero, p,v, + psvs = 0,
hence the superfluid moves towards the resistor, vs = (pn/ps)vn, setting up
a counterflow velocity v,s = v, — vs which is proportional to the applied
heat flux:

(3.2.1)

Uns = Up — Vs =

psST"

<V,
VI'I
Q<0

Figure 3.2.1. Laminar counterflow for Q < Qcm.

cTit

Provided that @ is less than a critical heat flux Q., this form of heat transfer
is laminar.

4 Quantised vortex lines

4.1 Helium in rotation

Quantum mechanics introduces remarkable constraints on the rotational
motion of helium II. It is instructive to consider the rotation of an ordinary,
classical fluid first. A bucket of water which rotates at constant angular
velocity € around the z axis has a height profile given by

QQTQ

29

: (4.1.1)

as shown in Figure 4.1.1 left; the water’s velocity field is v = Q¢ (solid
body rotation), and the vorticity is w = V x v = 20z, where Z and ¢ are
the unit vectors along the axial and azimuthal direction respectively.
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\LQ \/TQ
®
GO
©

Figure 4.1.1. Left: classical fluid in rotation. Middle: rotating helium II.
Right: top view of the vortex lattice.

The rotation of helium II is very different, because quantum mechanics
introduces important constraints on the rotational motion. According to the
two—fluid model, V x vy = 0, which means that the superfluid component
cannot rotate; we expect that the profile of rotating helium IT is

n Q2 2
2= (pp) 2; . (4.1.2)

which is temperature dependent.

The observed profile did not agree with this prediction. The puzzle
was solved by Onsager (1949) and Feynman (1955), who argued that the
superfluid forms vortex lines, as in Figure 4.1.1 middle and right, around
which the circulation & is quantised, see Donnelly (1991):

% v, -dl =k, (4.1.3)
c

where h is Planck’s constant. The quantum of circulation (measured by
Vinen in 1961) is

h
k=—=997x10"%cm? s7, (4.1.4)
m

where m is the mass of the helium atom.

Equation 4.1.3 can be used to determine the velocity field. Let C be a
circle of radius r around the axis of the vortex; then the superfluid velocity
is

K
= 4.1.5
Vo =5 (4.1.5)
as shown in Figure 4.1.3.
In Section 5 we shall see that the vortex core is hollow, so Equation 4.1.5

is valid only for r > ag where ag is the vortex core radius.
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Figure 4.1.2. Vortex line

50

0 r

Figure 4.1.3. Velocity field around a vortex line.

4.2 The first vortex

The critical angular velocity €2, for the appearance of the first vortex line
can be determined in the following way, see Donnelly (1991). Thermody-
namical equilibrium requires minimisation of the free energy, F = E — TS,
in the rotating frame of reference, which is

FF=F-Q L=(FE-TS-Q-1, (4.2.1)
where F is internal energy, €2 the angular velocity, and L the angular mo-
mentum. Let 7= 0 and consider helium II contained in a rotating cylinder
of radius R. The first vortex appears if

—_F

no vortex

AF = F!

vortex

= E—-QL <0, (4.2.2)

where the energy and the angular momentum (per unit length) are

27 R 2
E= / d¢ / PsYs rar, (4.2.3)
0 ap 2
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2m R
L:/ d(i)/ PsTUSTAr. (4.2.4)
0 ap

Substituting vs = x/(27r) we find that the critical velocity of vortex ap-
pearance is

Q. In (R/ao), (4.2.5)

K
T 2T R2

where ag ~ 10~8 ¢m is the vortex core radius.

4.3 Vortex lattice

If © is increased past 2., more and more vortex lines appear in the flow.
A bucket of helium rotating at constant angular velocity 2 > €2, contains a
lattice of quantised vortex lines aligned along the axis of rotation as shown
in Figure 4.1.1. The lattice is steady in the rotating frame (see Figure 4.1.1
right; the number of vortex lines per unit area is given by Feynman’s rule
2Q

n=" (4.3.1)

Note that although the microscopic superflow is potential (vs ~ 1/7), the
macroscopically—averaged flow which results from the vortex lattice corre-
sponds to solid body rotation (vs ~ Qr). In other words, by creating n
quantised vortices per unit area, helium IT has the same (large-scale) vor-
ticity of a classical rotating fluid (292 = nk).

Equation (4.3.1) has been tested by direct visualisation of quantised vor-
tices at low temperatures by cite WP74; their technique consisted in trapping
electrons along the vortex lines and then collecting them on electrodes at
the top of the container. More recently, direct visualisation of quantised
vorticity was achieved by Bewley, Lathrop, and Sreenivasan (2006), who
trapped micron—size particles in the vortices and imaged the particles with
a laser. The method, called Particle Image Velocimetry (PIV), is described
in the Chapter by Sergeev in this book. Quantised vorticity in atomic
Bose—Einstein condensates has also been achieved directly using lasers, see
Madison, Chevy, Wohlleben, and Dalibard (2000).

5 The Bose—Einstein condensate model

5.1 The NLSE

The natural question raised by Equation (4.1.5) is: what happens if
r — 0 7 To answer this question we need a model for the vortex core.
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Such model is provided by the Nonlinear Schrédinger Equation (NLSE), also
called the Gross—Pitaevskii (GP) equation (see the Chapter by Berloff in this
book). The NLSE describes accurately weakly interacting Bose particles in
atomic Bose-FEinstein condensates, In the case of helium II, the interaction
between the bosons is strong, and our core model will be only qualitative,
but sufficient for our purpose.

In the Hartree approximation, a condensate of weakly interacting Bose
particles is described by a single particle wavefunction v for N bosons of
mass m which obeys the NLSE

ma—w——h—zv2¢+V|¢|2w—E P (5.1.1)
o 2m 0 o o
where Vj is the strength of the repulsive interaction between the bosons and
Ey is the energy increase upon adding one boson (chemical potential).
The simplest solution of Equation (5.1.1) is the uniform condensate at

rest:

Eqy

= 1.2
e (5.1.2)

Y =1 =

Another exact solution is the 1-dimensional solution in 0 < x < 0o near
a wall at x = 0:

¥ = 1hoe = tanh(z/ao), (5.1.3)
where the quantity
B2
= 5.1.4
ao B (5.1.4)

is called the healing length.

III:K‘

) < a~—> X

Figure 5.1.1. Condensate near the wall. The healing length is ag.
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It is easy to verify that small perturbations of the uniform solution obey

the dispersion relation
Ey h2 k2
=kyf— (1 5.1.5
@ \/m ( t imE, (5.1.5)

shown in Figure 5.1.2, where w is the angular frequency and k is the
wavenumber. Note that, if & < 1, then w = ck where ¢ = /Ey/m is
the speed of sound; if k > 1, then w ~ h?k?/(2m), which is the dispersion
relation of free particles. Note also that the NLSE dispersion relation — see
Figure 5.1.2 — does not have a roton minimum like Landau’s spectrum — see
Figure 2.3.1.

®

k
Figure 5.1.2. NLSE: dispersion relation w = w(k).

5.2 Fluid dynamics interpretation of the NLSE

The Madelung transformation

Y = Re', (5.2.1)

where R is the amplitude and S is the phase of ¢, provides us with a simple
fluid dynamics interpretation of the NLSE. If we substitute Equation (5.2.1)
into Equation (5.1.1), we obtain the continuity equation

Ips
ot

and the (quasi) Euler equation

+ V- (psvs) =0 (5.2.2)
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8vsj 8vsj . _@ BEjk
Ps ( + vsk l‘k) - 81‘]’ + 8xk (523)

where the usual convention applies of summation over repeated indices,

ps = mR? (5.2.4)
is the density,
h
vy, =—VS (5.2.5)
m
is the velocity (with Cartesian components vy, k = 1,2, 3),
Yo o
= 5.2.6
P=55hs (5.2.6)
is the pressure, and
A\° 9%In Ps
Yik=|=— s 5.2.7
Ik <2m> p Ox;0xy, ( )

is the quantum stress. Note that, without the quantum stress, the NLSE
would describe a classical inviscid Euler fluid.

5.3 Vortex line solution of the NLSE

A vortex line solution of the NLSE is easily found. We use cylindrical
coordinates (r, @, z), substitute S = ¢ into 1y = Re™, and solve for the
resulting velocity and density fields. We obtain

h K -
s = — = — 5 . -1
v, mVS 27rr¢ (5.3.1)

which is the velocity field of a vortex line aligned along z shown in Fig-
ure 4.1.3.
To find the density field corresponding to this velocity field a numerical inte-
gration is required; the result is very similar to what shown in Figure 5.1.1:
the density drops from its bulk value (away from the vortex axis) to zero (on
the vortex axis) over a distance of the order of the healing length. This dis-
tance is thus called the vortex core radius. In helium II, it is approximately
1078 c¢m. We conclude that that although the velocity x/(27r) — oo for
r — 0, there is no problem because in the same limit p, — O.

Finally we compute the circulation around the vortex axis along a closed
path C. Taking for C' a circle of radius r we recover
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2
?{ v, -dl = / vsrd¢ = K, (5.3.2)
C 0

as expected.

5.4 NLSE versus Euler

We have seen that the difference between the NLSE and the Euler equa-
tion is the quantum stress term. The natural question is thus in which sense
a superfluid is similar to a classical inviscid Euler fluid.

Let D be the typical length scale of a problem. The ratio of the pres-
sure term and the quantum stress term in the NLSE scales as h? /(mEyD?),
which is unity for D ~ ag. We conclude that the quantum stress is impor-
tant only at scales not larger than the healing length, D < ay.

The quantum stress is indeed responsible for phenomena such as vortex
nucleation, see Frish, Pomeau, and Rica (1992) and Winiecki and Adams
(2000), and vortex reconnections, see Koplik and Levine (1993); these phe-
nomena are outside the range of predictions of the classical Euler equations.
Away from vortices, however, where the density is approximately constant,
the quantum stress is zero, and the NLSE reduces to the Euler equation.
Since the healing length is ag ~ 10~® cm and the typical vortex separation
in quantum turbulence experiments is £ ~ 1072 to 10~ cm, there is a wide
separation between the two scales. We conclude that, apart from relatively
rare events such as vortex reconnections and nucleation, in most of the flow
at most of the time the superfluid described by the NLSE is essentially a
classical inviscid Euler fluid.

6 Two—fluid model with friction

6.1 Mutual friction

Quantised vortex lines interact with the phonons and rotons which make
up the normal fluid, thus coupling the superfluid component with the normal
fluid component, see Barenghi, Donnelly, and Vinen (1983). The coupling
force F,,, is called mutual friction. It is proportional to the relative velocity
between the two fluids, acting as a friction on each fluid. Thus, in the
presence of quantised vorticity, the momentum conservation equations of
Landau’s two—fluid model become

Pn (aaitn + (Vn : V)Vn> = 7%Vp - pSSVTa +77V2Vn + FWS’ (611)
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Ps <% + (Vs : V)Vs) = 7%Vp+ psSVT - FnS' (612)

6.2 Attenuation of second sound

Consider a vessel which contains helium II and rotates at constant an-
gular velocity 2. A second sound pulse or resonance which moves across
helium suffers a bulk attenuation. What concerns us here is the extra atten-
uation which arises due to the presence of vortices, shown in Figure 6.2.1.
This extra attenuation can be used to measure the density of vortex lines.

Following Hall and Vinen (1956), the mutual friction force is

B B’
F., = p:psn X (Q X q) ppnpsQ X q, (6.2.1)

where

qQ=V, — Vs, (6.2.2)

and B and B’ are temperature—dependent mutual friction coefficients which
depend on the interaction of phonons and rotons with the quantised vortices.
Substituting q and F into the Equation (6.1.1) and Equation (6.1.2), we
obtain the following second sound wave equation:

d2

Tdie-maxM pax@xlg=dvv.a (623

dt dt

Let us assume that the second sound propagates in the z direction:

a = (g, qy, 0)eF* =t (6.2.4)

where k is the wavenumber and w the angular frequency. In typical experi-
mental conditions we have /w < 1, hence we obtain

1 OB
N — ,—— ). 2.
k - (w+i 5 ) (6.2.5)

The attenuation coefficient & is the imaginary part of k:

__ BQ (6.2:6)
oz—202. L.

In fact

a = (¢u, qy,0)e e (@/c2=t) (6.2.7)
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Note that angular velocity of rotation (2 is related to the vortex line
density L via Feynman’s rule, Equation (4.3.1), so, by measuring &, we can
recover the vortex line density.

It is therefore possible to perform an absolute measurement of the amount
of vortex lines which are present in a turbulent flow. First the vessel is ro-
tated, and the second sound signal is calibrated against the known vortex
line density (number of vortices per unit area) L = 2Q/k. Secondly, the
vessel is stopped, the turbulence experiment is performed, and the second
sound attenuation allows us to recover the vortex line density L (now to
be interpreted as the vortex length per unit volume). Finally, it must be
noticed that second sound is not attenuated by vortex lines which are par-
allel to the direction of propagation. If we assume that the turbulence is
isotropic, only 2/3 of the vortices will attenuate the second sound wave.

O

A

Figure 6.2.1. Left: second sound wave in a non-rotating vessel (no vor-
tices). Right: second sound wave in the presence of vortices in a rotating
vessel (vortices are present): note the reduced amplitude of the wave.

7 Vortex dynamics

7.1 The Biot—Savart law

The radius of the superfluid vortex core, approximately a ~ 1078 cm,
is much smaller than any length scale of interest, so it is a good idea to
approximate vortex lines as space curves of infinitesimal thickness. This
approach was introduced by Schwarz (1985, 1998). The curves must be
either closed loops or end at a boundary because a vortex cannot terminate
in the middle of the flow.

Let s = s(£) be the position of a point on such a curve, where £ is the
arc length. Following the classical theory of space—curves, we define the
tangent T, normal N and binormal B unit vectors:
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ds

=2 1.1
S =T (7.1.1)
dT -
— =¢N 7.1.2
dg c ? ( )
B=TxN, (7.1.3)

where ¢ = [s"] is the curvature and R = 1/c the local radius of curvature.
The three vectors T, N and B form a right-handed system, as shown in
Figure 7.1.1.

Figure 7.1.1.

The next step is to find the equation of motion of the vortex line. We
start from classical definition of vorticity field w associated with a velocity
field v:

w=Vxv. (7.1.4)
Let us introduce the vector potential v =V x A; then A obeys the Poisson
equation
VA = —w, (7.1.5)
whose solution is
1 [ wx)d
Ax)=— | ———, 7.1.6
0 =4 [ (716)

where r = |x — x/|. In our case the vorticity is formally concentrated on the
vortex filament, w(x')d®s’ = kd€(x’), thus

1
A ﬁjﬁde’, (7.1.7)

:47T r
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