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“Allora è l’huomo in pace, quando per morte è uscito delle
turbolenze di questo mondo, e venuto alla salute eterna.”

Prima definizione di “Turbolenza” - Vocabolario Accademia
della Crusca, Venezia (1612)

“And man shall be at peace when death removes him from the
turbulence of this world and he comes to know eternal wellbeing”

First definition of the word “turbolenza” from the Accademia
della Crusca Dictionary, Venice, Italy (1612)

To our colleague and friend Tim (1966–2010)



Preface 2011

With the 4th ITI conference in the beautiful ancient town of Bertinoro, North Italy,
2010, the tradition of the interdisciplinary turbulence initiative (ITI) has been con-
tinued. About 100 researchers from about 20 different countries gathered in the
hospitable centre of the University of Bologna to present the latest contributions in
turbulence research. After an external peer review process the present 63 papers
were collected for this forth issue on “progress in turbulence” dedicated to the mem-
ory of Prof. Tim Nickels. Shortly after giving an invited lecture at the 4th ITI con-
ference, the turbulence community lost a world-class scientist, a friend and devoted
family man.

Basic as well as applied research is driven by the rather notorious difficult and
essentially unsolved problem of turbulence. In this collection of contributions clear
progress can be seen in different aspects, ranging from new quality of numerical
simulations to new concepts of experimental investigations and new theoretical de-
velopments. The importance of turbulence is shown for a wide range of applications
including: combustion, energy, flow control, urban flows, are few examples found
in this volume. A motivation this year was to bring fundamentals of turbulence in
connection with renewable energy. This lead us to add a special topic relevant to the
impact of turbulence on the wind energy conversion.

Beside all progress we have to realize that a general fundamental understanding
of turbulence is still missing, even though new approaches are discovered and in-
vestigated. These new approaches often lead to new methods, which result in being
very useful for other disciplines. Thus turbulence research has been a source of new
scientific fields over the last decades. Nonlinear dynamics, chaos research, fractals
and complexity may be taken as examples.

This span of research from pure mathematical analysis over turbulence physics
to applied turbulence research has lead in the last decades to a broad diversification
of turbulence research where contact between different sub-communities has some-
times been lost. It was in particular the latter drifting apart in the community that has
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been the stimulation of the interdisciplinary turbulence initiative, which started in
1999 as cooperation between physicists and engineers working in turbulence funded
by the German science foundation DFG. Based on the successful previous confer-
ences, we will continue with this initiative for subsequent years with the 5th ITI
Conference planned for September 2012.

The structure of the present book is as such that contributions have been bun-
dled according to covering topics i.e. I Basic Turbulence Aspects, II Particle Laden
Flows, III Modeling and Simulations, IV, Experimental Methods, V Special Flows,
VI Atmospheric Boundary Layer, VII Boundary Layer, VIII Wind Energy and IX
Convection.

At this point we would like to thank all authors for their contributions to this
proceedings and the referees giving critical comments to the contributions and there
with considerably raising the scientific quality. We would like to thank Thomas
Ditzinger from Springer for his patience during the production of the book. Finally
we gratefully acknowledge the staff of the University of Bologna and Olga Kelbin,
George Khujadze, Andreas Rosteck for helping us to carry out this conference.

Martin Oberlack
Joachim Peinke

Alessandro Talamelli
Luciano Castillo
Michael Hölling

(Darmstadt, Oldenburg, Forli and Texas, 2012)
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Scale-Energy Fluxes in Wall-Turbulent
Flows

A. Cimarelli, E. De Angelis, and C.M. Casciola

Abstract. According to the Kolmogorov theory, the most important feature
of high Reynolds number turbulent flows is the energy transfer from large to
small scales. This energy cascade is believed to universally occur in a certain
interval of scales, known as inertial range. This phenomenology has been
shown to occur in a wide range of flows but not in wall-turbulence where a
reverse cascade in the near-wall region is observed [1]. In order to analyse
this new scenario, in the present work a study of a generalized Komogorov
equation is performed. The results reveal an energy fluxes loop in the space
of scales where the reverse cascade plays a central role. At the base of this
phenomena it is found the anisotropic energy injection due to the action
of the turbulent structures involved in the near-wall cycle. The data used
for the analysis are obtained with a pseudo-spectral code in a channel at
Reτ = 550. The computational domain is 8πh× 2h× 4πh with a resolution
in the homogeneous directions of Δx+ = 13.5 and Δz+ = 6.7.

1 The Energy Transfer in Wall-Turbulence

The most important contribution to the description of the energy transfer
mechanisms in turbulence is the Kolmogorov theory. Under the assumption
of a statistical isotropic condition, this theory is an exact quantitative result
obtained by the balance of the second order structure function, 〈δu2〉, where
δui = ui(xs+rs)−ui(xs) is the fluctuating velocity increment and 〈·〉 denotes
ensamble average. Although this is a well known result it is useful to go back

A. Cimarelli · E. De Angelis
DIEM, Università di Bologna, Viale Risorgimento, 40136 Bologna, Italy
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M. Oberlack et al. (Eds.): Progress in Turbulence and Wind Energy IV, SPPHY 141, pp. 3–6.
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over its assumptions. The balance of 〈δu2〉, for small scales but sufficiently
large so that the viscous diffusion processes may be neglected, reduces to the
4/5 law,

〈δu3
||〉 = −4

5
〈ε〉r (1)

where || denotes longitudinal velocity increments and ε = ν (∂ui∂xj) (∂ui∂xj)
is the pseudo-dissipation. This relation establishes that the turbulent energy
is transfered through the inertial range from large to small scales indepen-
dently on the scale under consideration and with a constant rate proportional
to the energy input/dissipation, 〈ε〉. There is no direct energy injection and
no direct energy extraction. This picture is believed to universally occur in-
dependently of the large-scale processess which feeds the turbulence, but fails
in wall-turbulence where the interaction between anisotropic production and
inhomogeneous spatial fluxes strongly modifies the energy cascade up to a
reverse cascade in the near-wall region [1].

Wall-bounded turbulence is characterized by several processes which
maybe thought as belonging to two different classes: phenomena which occur
in physical space and phenomena which take place in the space of scales. The
most significant aspect of the former is the spatial flux of turbulent kinetic
energy and of the latter is the energy transfer among scales due to the cou-
pling between eddies of different size. As a consequence, a full understanding
of these phenomena requires a detailed description of the processes occur-
ring simultaneously in physical and scale space. A tool for the study of these
phenomena is the generalized form of the Kolmogorov equation [2]. This equa-
tion, specialized for a channel flow with a longitudinal mean velocity U(y),
reads,

∂〈δu2δui〉
∂ri

+
∂〈δu2δU〉

∂rx
+ 2〈δuδv〉

(
dU

dy

)∗
+

∂〈v∗δu2〉
∂Yc

=

− 4〈ε∗〉+ 2ν
∂2〈δu2〉
∂ri∂ri

− 2

ρ

∂〈δpδv〉
∂Yc

+
ν

2

∂2〈δu2〉
∂Yc

2 (2)

where * denotes a mid-point average, i.e. u∗
i = (ui(x

′
s) + ui(xs))/2 and 〈·〉

denotes now average in the homogeneous directions. Equation 2 is written
in a four dimensional space, (rx, ry , rz, Yc), and involves a four dimensional
energy fluxes vector field Φ = (Φrx , Φry , Φrz , Φc),

∇ ·Φ(r, Yc) = ξ(r, Yc) (3)

where ∇· is a four dimensional divergence, Φr = (Φrx , Φry , Φrz) =
〈δu2δu〉 − 2ν∇r〈δu2〉, Φc = 〈v∗δu2〉 + 2〈δpδv〉/ρ − νd〈δu2〉/2dYc and ξ =
2〈δuδv〉 (dU/dy)∗ − 4〈ε∗〉. This form allows us to appreciate the two scale-
energy fluxes occuring in wall-flows, namely Φr through the scales of motion
and Φc in physical space. These fluxes assembled in the vectorΦ balance with
a source term ξ which accounts for the energy production and dissipation.
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Fig. 1 Scale-space behaviour at Y +
c = 20 of the energy fluxes vector (Φrx , Φrz )

with contour levels of 〈δu2〉 (left) and contour levels of ξ(rx, rz, |Yc) (right).

When this term reaches a positive value, ξ(r, Yc) > 0, the energy injection
via turbulent production exceeds the rate of energy dissipation. Therefore,
the regions of the (r, Yc)-space where ξ > 0 can be thought as characterized
by a scale-energy excess.

The phenomena of scale-energy excess is a peculiar aspect which char-
acterizes wall-turbulent flows with respect to homogenous flows where the
source term satisfies the constrain ξhom(r) ≤ 0. In homogeneous flows an ex-
cess of scale-energy cannot be observed. The energy transfer is initialized at
the largest scales by production whose amount equals the energy dissipation,
ξhom(r) = 0 for r → ∞. Then, out of the limit of large scales, the source
term becomes negative, ξhom(r) < 0, due to the monotonic decrease of the
production moving to small scales, see Casciola et al.[3]. Whereas, in wall-
turbulence there is not a balance between energy injection and dissipation
due to the presence of the inhomogeneous spatial fluxes. Indeed, it is well
known that turbulent production exceeds dissipation in the buffer layer lead-
ing to an excess of scale-energy ξ(r, Yc) > 0 at least for larger scales. This is a
very important phenomena which strongly modifies the energy fluxes pattern
of wall-turbulence from those usually observed in homogeneous flows. Equa-
tion 3 describes a vector field Φ(r, Yc) where are present both energy source
(ξ(r, Yc) < 0) and sink (ξ(r, Yc) > 0) regions in the (r, Yc)-space. As shown
in figure 1, the energy fluxes follow a sort of loop in the space of scales. The
fluxes first diverge from the energy source region feeding longer and wider
turbulent fluctuations through a reverse cascade. Then, the fluxes converge
to a classical forward cascade reaching the region of energy sink at the small-
est dissipative scales. The energy source region and, therefore, the peak of
energy production, take place deep inside the spectrum of scales, see figure
1. The energy is not introduced at the top of the spectrum and, therefore,
there is not an isotropic recovery as expected in the Kolmogorov theory. The
energy transfer is initialized at small scales and, diverging, leads to a strong
reverse cascade. The location of the energy source region appears closely re-
lated to the action of the coherent structures involved in the near-wall cycle
[4]. In particolar the spacing of this region suggest that this is presumably the
imprint of the quasi-streamwise vortices. Indeed, most of the turbulent pro-
duction of wall-turbulence is commonly associated to their action, see figure
2. Since the region of energy source is related to the streamwise vortices, the
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Fig. 2 Isocontour of the istantaneous turbulent production occuring in a xz-plane
at Y +

c = 20 (left) and in a yz-plane (right). The production pattern appears to be
the imprint of the structures involved in the near-wall cycle.

generation of the streamwise velocity streaks is a result of the reverse energy
cascade. In an energetic point of view, the whole near-wall cycle corresponds
to an energy fluxes loop in the space of scales.

2 Conclusions

The present work has been devoted to the assessment of the energy fluxes in
the space of scales of wall-turbulent flows. The analysis has shown an unex-
pected loop in the space of scales of the energy fluxes where a strong reverse
cascade occurs. At the base of this phenomena has been found the presence of
a peak of energy production in a small-scale region of the buffer layer which
causes the divergence of the energy fluxes. This energy source region appears
closely related to the dynamics of the quasi-streamwise vortices belonging to
the near-wall cycle.
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Conservation Laws of Helically Symmetric
Flows and Their Importance for Turbulence
Theory

O. Kelbin, A.F. Cheviakov, and M. Oberlack

Abstract. Our present understanding of statistical 3D turbulence dynamics in the
large wave number limit (or small scales) largely relies on the dissipation of tur-
bulent kinetic energy a quantity which is invariant under all symmetry groups
of Navier-Stokes equations except the scaling groups. In turn, this implies Kol-
mogorov’s sub-range theory and to a large part our understanding of energy transfer.
On the other hand in 2D turbulence, which is translational invariant in one direction,
the transfer mechanism among scales is rather different since the vortex stretching
mechanism is non-existing. Instead, the scale determining key invariant is enstro-
phy: an area integral of the vorticity squared which is one of the infinite many inte-
gral invariants (Casimirs) of 2D inviscid fluid mechanics. Hence the basic transfer
mechanisms between 2D and 3D turbulence are very different. To close this gap we
consider flows with a helical symmetry which is a twist of translational and rota-
tional symmetry. The resulting equations are ”2 1

2 D” which means they have three
independent velocity components though only two independent spatial variables.
We presently show that in the inviscid limit the helically symmetric equations of
motion admit a finite number of new non-trivial conservation laws comprising

• vorticity - though the basic vortex stretching mechanism is still active for helical
flows and

• stream function even in a non-linear form clearly stating a non-local conservation
laws since the stream-function is a line integral.
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It is to be expected that the new conservation laws may give some deeper insight
into turbulence dynamics and hence bridging 2D and 3D turbulence.

1 Mathematical Formulation of Helical Flows

We start with cylindrical coordinates (r,φ ,z) and introduce helical coordinates
(r,η ,ξ ) defined by η = aφ − bz/r2, ξ = az+ bφ , a,b ∈ R, a2 + b2 > 0.

A sketch of the coordinate system is depicted in figure 1. Here h the pitch of the
helix i.e for a = 1 we get b =−h/(2π).

z

x

y

h

r

u

u

ur

´

»

Fig. 1 Helical coordinates with a line ξ = const.. η = const. lines are orthogonal to the
ξ -lines.

Considering a helically symmetry implies the key assumption that the velocity
vector and pressure respectively write u = ur(t,r,ξ )er +uη(t,r,ξ )eη +uξ (t,r,ξ )eξ
and p = p(t,r,ξ ) i.e. they are all independent of η .

The Euler equations in this helical notation become:

ur

r
+
∂ur

∂ r
+

1
B(r)

∂uξ
∂ξ

= 0, (1a)

∂ur

∂ t
+ ur

∂ur

∂ r
+

1
B(r)

uξ
∂ur

∂ξ
− B2(r)

r

(
b
r

uξ + auη

)2

+
∂ p
∂ r

= 0, (1b)

∂uη
∂ t

+ ur
∂uη
∂ r

+
1

B(r)
uξ
∂uη
∂ξ

+
a2B2(r)

r
uruη = 0, (1c)

∂uξ
∂ t

+ ur
∂uξ
∂ r

+
uξ

B(r)

∂uξ
∂ξ

+
2abB2(r)

r2 uruη +
b2B2(r)

r3 uruξ +
1

B(r)
∂ p
∂ξ

= 0, (1d)

with the metric term B(r) = r√
a2r2+b2

.

The latter equations, presented in primitive variables, may be written in two an-
other formulations i.e. stream function formulation and vorticity variables. Due to
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lake of space we do not specify the equations and limit ourselves to the descrip-
tion of the procedure how to obtain these equations. At first we introduce a stream
functionΨ =Ψ(t,r,ξ ) such that

ur =−1
r
∂Ψ
∂ξ

, uξ =
B(r)

r
∂Ψ
∂ r

(2a)

which solves (1a) and in a second step we eliminate the pressure p via cross-
differentiation and summation of (1b) and (1d). With this we obtain a PDE system
of two equations forΨ and uη .

In case of vorticity formulation we apply a curl operator ω = ∇×u to the mo-
mentum equations in (1), which eliminates the pressure p and we obtain 3 trans-
port equations for the vorticity ω . The definition of vorticity components is the
following:

ωr =− 1
B(r)

∂uη
∂ξ

, ωξ =
∂uη
∂ r

+
a2B2(r)

r
uη (3a)

ωη =−
∂uξ
∂ r

−
uξ
r
+

1
B(r)

∂ur

∂ξ
+

a2B2(r)
r

uξ −
2abB2(r)

r2 uη . (3b)

2 Conservation Laws

We seek for local conservation laws using the direct method. The idea behind it
is that each equation of the system under investigation will be multiplied with a
multiplier depending on all independent and dependent variables including their
derivatives up to a given order. The Euler operator will be applied to this system
which in turn determines the multipliers and hence leads to local conservation laws
in divergence form (see [1])

∂Φt

∂ t
+
∂Φr

∂ r
+
∂Φξ
∂ξ

= 0. (4)

It can further be proven (see also [1]) that this is a necessary and sufficient condition
for conservation laws. For brevity we subsequently only give the densitiesΦt for the
three different systems and omit the fluxes:

• Primitive variables:

Φ(1)
t =

1
2

r
(

u2
r + u2

η+ u2
ξ

)
, Φ(2)

t =
r
a

B

(
−b

r
uη + auξ

)
, (5a)

Φ(3)
t = rF

(√
a2r2 + b2uη

)
, Φ(4)

t = 0, (5b)

which include energy, momentum in z-direction, an arbitrary function of momen-
tum in η-direction and, of course, conservation of mass which contains no time
derivative.
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• Stream function formulation:

Φ(1)
t =

r
2

u2
η +

a2r2 − b2

2(a2r2 + b2)2ΨΨr −
B2

2r
ΨΨrr −

1
2r
ΨΨξξ , (6a)

Φ(2)
t =−2bB

a
uη −

4b2B2

r3 Ψ − rΨξξ , Φ(3)
t =−G(t)

r
Ψξξ . (6b)

• Vorticity formulation:

Φ(1)
t =

b2B(r)4

r2 ξωr −
ar2B(r)

2b
ωη , Φ(2)

t = 0, Φ(3)
t = H(t,r)ωr, (7a)

Φ(4)
t =

(
a2r2 + 2b2)B(r)4ξωr +

bB(r)r2

2a
ωη , (7b)

Φ(5)
t =

2abB(r)4I(t)
r2 ξωr +B(r)I(t)ωη , (7c)

Φ(6)
t =

(
−a2B(r)2

r
J(t,r,ξ )+ J(t,r,ξ )r

)
B(r)ωr + J(t,r,ξ )ξωξ (7d)

All the latter conserved quantities do not trivially relate to the classical conservation
laws and may need special interpretation.

The analysis of the Navier-Stokes equations for all three formulations did not
reveal new conservation laws. In case of primitive variables we obtain same fluxes

as in (5) except Φ(1)
t , i. e. conserved quantities for Navier-Stokes equations are mo-

mentum in z-direction, an arbitrary function of momentum in η-direction and mass.
The energy does not stay preserved. The conserved quantities for streamfunction
and vorticity formulations also form a subset of the conserved quantities for Euler
equations as is to be expected.
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Velocity/Pressure-Gradient Correlation
Modelling for Improved Prediction
of Reattachment and Relaxation

C. Lo, I. Vallet, and B.A. Younis

Abstract. The computation of complex flows with large separation is one of
the numerous instances where second-moment closures outperform two-equations
models. Previous studies with the Reynolds-stress model developed by Gerolymos-
Vallet [3] (GV RSM) indicate that separation is quite accurately predicted, but also
that there is room for improvement in the reattachment and relaxation region. Exten-
sive testing suggests that the modelling of the pressure terms in the Reynolds-stress
transport equations has the greatest impact on the prediction of both separation and
reattachment. We propose a second-moment closure including a pressure-velocity
gradient model with an additional term in the basis of the slow-part redistribution
tensor proposed by Lumley [7] and a closure for the pressure-diffusion tensor which
model directly the divergence of the pressure-velocity correlation. The present
Reynolds-stress model is validated against a shock-wave/turbulent-boundary-layer
interaction on a compression ramp and compared with two second-moment closures
and the linear two-equations model of Launder-Sharma [5] (LS k− ε).

1 Introduction

The purpose of the present paper is to develop a second-moment closure, separately
modelling the anisotropy of dissipation and redistribution (Eq. 1), maintaining the
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satisfactory prediction of separation of the GV RSM [3] and with a specific model

for pressure diffusion term d(p)
i j (Eq. 2), which was shown in previous studies [8, 9]

to improve the prediction of reattachment and relaxation.
The flow is modelled by the Favre-Reynolds-averaged Navier-Stokes equations [3,
10], coupled with the appropriate modelled turbulence-transport equations. The ex-
act transport equations for the Favre-Reynolds-averaged Reynolds-stresses are

∂ ρ̄ ũ′′i u′′j
∂ t

+
∂ (ρ̄ ũ′′i u′′j ũ�)

∂x�︸ ︷︷ ︸
convectionCi j

=
∂
∂x�

(−ρ̄ ˜u′′i u′′j u
′′
� − p′u′′jδi�− p′u′′i δ j�+ u′′i τ ′j�+ u′′jτ ′i�)︸ ︷︷ ︸
diffusion di j = dT

i j + dμi j

(
−ρ̄ ũ′′i u′′�

∂ ũ j

∂x�
− ρ̄ ũ′′j u

′′
�

∂ ũi

∂x�

)
︸ ︷︷ ︸

production Pi j

+ p′

(
∂u′′i
∂x j

+
∂u′′j
∂xi

− 2
3

∂u′′k
∂xk

δi j

)
︸ ︷︷ ︸

redistributionφi j

+
2
3

p′
∂u′′k
∂xk

δi j︸ ︷︷ ︸
φp

∼= 0

−
(
τ ′j�
∂u′′i
∂x�

+ τ ′i�
∂u′′j
∂x�

)
︸ ︷︷ ︸

dissipation ρ̄εi j

+

(
−u′′i

∂ p̄
∂x j

− u′′j
∂ p̄
∂xi

+ u′′i
∂ τ̄ j�

∂x�
+ u′′j

∂ τ̄i�

∂x�

)
︸ ︷︷ ︸

density fluctuation effects Ki j
∼= 0

(1)

where the symbol ˘(.) is used to denote a function of average quantities that is nei-

ther a Reynolds-averaged (.) nor a Favre-average (̃.), (·)′′ are Favre-fluctuations and
(·)′ are nonweighted-fluctuations [3]. Convection and production are exact terms

whereas the diffusion due to turbulent transport dT
i j = d(u)

i j + d(p)
i j and molecular

viscosity d(μ)
i j , the pressure-strain correlation φi j and the dissipation ρ̄εi j terms re-

quire modelling. The turbulent-length scale was determined by solving the Launder-
Sharma [5] modified dissipation-rate ε∗ = ε − 2ν̆(grad

√
k)2 transport-equation,

where k= ũ′′i u′′i /2 is the turbulent-kinetic energy and ε = εii/2 its dissipation-rate. x�
are the Cartesian space coordinates, ui are the velocity components, ρ is the density,
p is the pressure, τi j is the viscous stress tensor, and δi j is the Kronecker symbol.

2 Present Reynolds-Stress Model

We maintain, in the modelling approach the splitting of the velocity/pressure-

gradient tensor Πi j = φi j + d(p)
i j into the pressure-diffusion term d(p)

i j =

∂x�(−u′i p
′δ j� − u′j p

′δi�) where p′u′j is the pressure-velocity correlation, the
redistribution term φi j and the pressure-dilation correlation φp which is neglected.

In the present closure, the pressure-diffusion model d(p)
i j contains a Lumley-type [7]

slow quasi-homogeneous term, with a slow and a rapid inhomogeneous terms
containing grad ε∗ ⊗ grad ε∗ and grad k⊗ grad k respectively



Velocity/Pressure-Gradient Correlation Modelling 13

d(p)
i j

ρ̄
=CSP1 k3

ε3

∂ε∗

∂xi

∂ε∗

∂x j
+CSP2

∂ ( ˜u′′mu′′mu′′jδi�+ ˜u′′mu′′mu′′i δ j�)

∂x�
+CRP k2

ε2 S̆k� a�k
∂k
∂xi

∂k
∂x j

CSP1 =CRP =−0.005; CSP2 =−0.022; ai j =
ũ′′i u′′j

k
− 2

3
δi j; S̆i j =

1
2(
∂ ũi
∂x j

+
∂ ũ j

∂xi
) (2)

The redistribution term φi j, which is zero in k − ε models (φ�� = 0), is the most
important term in second-moment closures. We propose, a formulation where φi j is
modelled separately from the dissipation term ρ̄εi j

φi j =−CSH1
φ ρ̄ε

∗ai j +CSI1
φ
ε∗

k

[
ρ̄ ũ′′

nu′′meI
neI

mδi j − 3
2 ρ̄ ũ′′

nu′′i eI
neI

j − 3
2 ρ̄ ũ′′

nu′′j e
I
neI

i

]
−CSH2

φ ρ̄
k
ε
∂k
∂x�

⎡⎣aik
∂ ũ

′′
ku′′j
∂x�

+ a jk
∂ ũ

′′
ku′′i
∂x�

− 2
3δi jamk

∂ ũ
′′
ku′′m
∂x�

⎤⎦
+CSI2

φ
[
φ SH2

nm eI
neI

mδi j − 3
2φ

SH2
in eI

neI
j − 3

2φ
SH2
jn eI

neI
i

]
−CRH

φ
(
Pi j − 1

3δi jPmm
)
+CRI

φ
[
φ RH

nmeI
neI

mδi j − 3
2φ

RH
in eI

neI
j − 3

2φ
RH
jn eI

neI
i

]
(3)

where the first term of slow-part φ SH1
i j +φ SI1

i j is function of the modified dissipation-
rate ε∗ to reach easily the correct zero-value of the velocity/pressure-gradient tensor
Πi j at the wall. The coefficients CSI1

φ , CSI2
φ and CRI

φ which mimic distance from the
wall effects but without the use of any wall-topology-related parameters (such as
geometric distance from the wall), were calibrated on the DNS basis of Gerolymos-
Senechal-Vallet [2] in a fully developed turbulent plane channel flow (Reτ = 180).
The unit-vector e I which points in the the direction of inhomogeneity of the tur-
bulent field was introduced [3] to replace the geometric normal to the wall. The
rapid-part closure φ RH

i j +φ RI
i j developed by Gerolymos-Vallet [3] was not modified in

the present study.

3 Models Comparison on a Supersonic Compression Ramp

The present closure was assessed by comparison with available experimental data
on the compression-ramp configuration (Fig. 1) studied by Ardonceau [1]. The com-
putational method used to solve the compressible Navier-Stokes equations with the
turbulence closure is described in [4]. The inflow conditions as well as the com-
putational grid details are given in [10]. A second-moment closure, which corre-
sponds to the GV RSM [3] with the homogeneous-rapid-redistribution coefficient
CRH
φ proposed by Launder-Shima [6] (hereafter GV–LS RSM), was developed to

analyse the redistribution-tensor φi j influence. The linear LS k − ε closure and
the GV–LS RSM are not able to predict the separation zone and as a consequence
seem to give the best result in the reattachment region. On the contrary, the present
closure and the GV RSM, which use the CRH

φ developed by Gerolymos-Vallet [3], are
in good agreement with experimental data. However the present RSM, which closes
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Fig. 1 Comparison of grid-converged computations with measurements [1] of x-wise mean
velocity at various axial stations, for the Ardonceau α =18 deg compression-ramp interaction
(M∞ =2.25, Re0 = 7×103).

the pressure-diffusion tensor, is slightly better after the corner (x > 0), especially in
the relaxation region (x ≥ 2.5δ0).

4 Conclusions

A new second-moment closure was assessed on a shock-wave/turbulent- boundary-
layer interaction and compared with two other RSMs and a two-equations closure
focusing on the prediction of the detachement and reattachement points. The pre-
dicting capability of full (differential) RSMs over a classical linear eddy-viscosity
model is observed, confirming the study of Yakinthos [11] for attached flow in a
90-deg duct. The importance of the redistribution tensor to predict separation point
is clearly identified while the pressure-diffusion closure slightly improve the predic-
tion of the reattachement zone.
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2. Gerolymos, G.A., Sénéchal, D., Vallet, I.: Performance of very-high-order upwind
schemes for DNS of compressible wall-turbulence. Int. J. Num. Meth. Fluids 63,
769–810 (2010)



Velocity/Pressure-Gradient Correlation Modelling 15

3. Gerolymos, G.A., Vallet, I.: Wall-normal-free near-wall Reynolds-stress closure for 3-D
compressible separated flows. AIAA J. 39(10), 1833–1842 (2001)

4. Gerolymos, G.A., Vallet, I.: Mean-flow-multigrid for implicit Reynolds-stress-model
computations. AIAA J. 43(9), 1887–1898 (2005)

5. Launder, B.E., Sharma, B.I.: Application of the energy dissipation model of turbulence to
the calculation of flows near a spinning disk. Lett. Heat Mass Transf. 1, 131–138 (1974)

6. Launder, B.E., Shima, N.: 2-moment closure for the near-wall sublayer: Development
and application. AIAA J. 27(10), 1319–1325 (1989)

7. Lumley, J.L.: Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123–176
(1978)

8. Sauret, E., Vallet, I.: Near-wall turbulent pressure diffusion modelling and influence in
3-D secondary flows. ASME J. Fluids Eng. 129(5), 634–642 (2007)

9. Vallet, I.: Reynolds-stress modelling of 3-D secondary flows with emphasis on turbulent
diffusion closure. ASME J. Appl. Mech. 74(6), 1142–1156 (2007)

10. Vallet, I.: Reynolds-stress modelling of M = 2.25 shock-wave/turbulent-boundary-layer
interaction. Int. J. Num. Meth. Fluids 56(5), 525–555 (2008)

11. Yakinthos, K., Vlahostergios, Z., Goulas, A.: Modeling the flow in a 90◦ rectangular
duct using one Reynolds-stress and two eddy-viscosity models. Int. J. of Heat and Fluid
Flow 29, 35–47 (2008)



Turbulence without Richardson-Kolmogorov
Cascade

J.C. Vassilicos and N. Mazellier

Abstract. We study turbulence generated by low-blockage space-filling fractal
square grids [5]. This device creates a multiscale excitation of the fluid flow. Such
devices have been proposed as alternative and complementary tools for the inves-
tigation of turbulence fundamentals, modelling and applications [3, 5, 6]. New in-
sights on the fundamentals of homogeneous turbulence have been found, showing in
particular that the small scales are not universal beyond small corrections caused by
intermittency, finite Reynolds number and anisotropy. The unprecedented possibil-
ities offered by these devices also open new attractive perspectives in applications
involving mixing, combustion and flow management and control.

1 Introduction

A close approximation of homogeneous and isotropic turbulence can be achieved by
means of grid-generated turbulence (see e.g. [1]). Even though its relevance to the
study of turbulence fundamentals is clear, grid-generated turbulence produced by
standard devices is often restricted to low Reynolds numbers. Deeper insights and
understanding of turbulence physics (regarding, for instance, the mechanisms of
interscale energy transfers) require new experimental approaches. Turbulence gen-
erated by multiscale/fractal grids is one such new approach [2]. Multiscale/fractal
grids are new devices made from the superposition of a given pattern reproduced
and multiplied at smaller scales (see Figure 1). Such a device is expected to excite a
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Fig. 1 Typical example of
a square multiscale/fractal
grid. In this particular ex-
ample, the grid has N = 5
fractal iterations.

broad range of turbulent scales, unlike standard regular grids. The turbulence gener-
ated by some such devices has already led to results which have shed serious doubt
on the universality of the small-scale turbulence [3]. An attempt to account for some
of these results has recently been made in terms of a single length-scale theory [7].
Here we report new insights on turbulence generated by space-filling fractal square
grids and we discuss how the single-scale theory proposed in [7] accounts for our
results.

2 Results

The streamwise evolution of the turbulence intensity measured along the centerline
downstream of several fractal square grids is plotted in Figure 2. As reported in [2],
we observe a protracted region closer to the grid where the turbulence builds-up
until it reaches a maximum at x = xpeak and then decays.

Fig. 2 Turbulence intensity
vs streamwise distance for
four different fractal grids.
See [4] for captions. The
symbols (*) represent a
standard regular grid.
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The location of the turbulence peak is determined by the large-scale geometry of
the fractal grids, but the observed fact that the turbulence is approximately homoge-
neous and isotropic shortly beyond xpeak is determined by the multiple scales of the
grid (see [4] for more details). It is worth noting that the turbulence levels achieved
by means of fractal square grids are much higher than with standard regular grids (*
symbols in Figure 2) and comparable to those reported for active grids [6].
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A deeper investigation of the turbulent flow has been performed by studying the
turbulent length-scales, in particular the integral length-scale Lu (characteristic of
the energy containing eddies) and the Taylor micro-scale λ (characteristic of the
smallest turbulent eddies). The ratio Lu/λ computed for various inlet velocities U∞
in the decaying region (i.e. x > xpeak) of fractal square grid turbulence is plotted in
Figure 3 as a function of the Taylor-based Reynolds number Reλ . It turns out that the
ratio Lu/λ is independent of Reλ for a given U∞. This is a huge departure from the
usual relationship found in standard fully developed turbulence, i.e. Lu/λ ∼ Reλ .
This result seriously calls into question the statement that the dissipation constant
and the interscale dynamics of small-scale turbulence are universal for large Reλ .

Our results may be accounted for by means of a single length-scale self-preserving
theory [7]. Starting from the spectral energy equation

∂
∂ t

E(k, t) = T (k, t)− 2νk2E(k, t), (1)

and considering solutions of the form

E(k, t) = Es(t,U∞,Re0,∗) f (kl(t),Re0,∗), (2)

T (k, t) = Ts(t,U∞,Re0,∗)g(kl(t),Re0,∗), (3)

where Re0 ≡ U∞t0
ν is the global Reynolds number based on the lateral thickness of the

thickest bars on the fractal grid, l(t) = l(t,Re0,∗) is the postulated unique character-
istic length-scale of the turbulence, the argument ∗ represents any dependence on the
initial/boundary conditions and the functions f and g are dimensionless. Combining
Equations (1), (2) and (3) and extrapolating in a way explained in [4] (including an
assumption of a −5/3 exponent at high Reynolds number) yields

Eu(kx,x) = u′2(x)L0(kxL0)
−5/3Hu(kxL0Re−3/4

0 ), (4)

ε ≈ 1.5u′2U∞/xpeak, (5)

for asymptotically high values of Re0, where L0 is the length of the longest bars
on the grid. Our experimental results lend support to the single scale scaling of the
energy spectrum as shown in Figure 4.

Fig. 3 Turbulent length-
scale ratio vs the Taylor-
based Reynolds number.
The dashed line represents
values computed for stan-
dard fully developed turbu-
lence, see [4].
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