A Comprehensive Approach on Sentiment Analysis & Prediction

39,99 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9783346798596
Document in the subject Computer Sciences - Artificial Intelligence, , language: English, abstract: In today scenario there is abrupt usage of microblogging sites such as Twitter for sharing of feelings and emotions towards any current hot topic, any product, services, or any event. Such opinionated data needs to be leveraged effectively to get valuable insight from that data. This research work focused on designing a comprehensive feature-based Twitter Sentiment Analysis (TSA) framework using the supervised machine learning approach with integrated sophisticated negation handling approach and knowledge-based Tweet Normalization System (TNS). We generated three real-time twitter datasets using search operators such as #Demonetization, #Lockdown, and #9pm9minutes and also used one publically available benchmark dataset SemEval-2013 to assess the viability of our comprehensive feature-based twitter sentiment analysis system on tweets. We leveraged varieties of features such as lexicon-based features, pos-based, morphological, ngrams, negation, and cluster-based features to ascertain which classifier works well with which feature group. We employed three state-of-the-art classifiers including Support Vector Machine (SVM), Decision Tree Classifier (DTC), and Naive Bayesian (NB) for our twitter sentiment analysis framework. We observed SVM to be the best performing classifier across all the twitter datasets except #9pm9minutes (DTC turned out to be the best for this dataset). Moreover, our SVM model trained on the SemEval-2013 training dataset outperformed the winning team NRC Canada of SemEval- 2013 task 2 in terms of macro-averaged F1 score, averaged on positive and negative classes only. Though state-of-the-art twitter sentiment analysis systems reported significant performance, it is still challenging to deal with some critical aspects such as negation and tweet normalization.
Autor: Manu Banga
EAN: 9783346798596
eBook Format: PDF
Sprache: Englisch
Produktart: eBook
Veröffentlichungsdatum: 23.01.2023
Kategorie:
Schlagworte: analysis approach comprehensive prediction sentiment

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870

Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr