A D-Vine Copula-Based Quantile Regression Approach for the Prediction of Heating Energy Consumption. Using Historical Data for German Households

0,99 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9783346020512
Master's Thesis from the year 2018 in the subject Economics - Statistics and Methods, grade: 1,0, University of Augsburg, language: English, abstract: The aim of this thesis is to add to the as of yet mostly missing literature on how a D-vine copula based quantile regression model can be used to predicte the accurate level of energy consumption. Energetic retrofitting of residential buildings is poised to play an important role in the achievement of ambitious global climate targets. A prerequisite for purposeful policy-making and private investments is the accurate prediction of energy consumption. Building energy models are mostly based on engineering methods quantifying theoretical energy consumption. However, a performance gap between predicted and actual consumption has been identified in literature. Data- driven methods using historical data can potentially overcome this issue. The D-vine copula-based quantile regression model used in this study achieved very good fitting results based on a representative data set comprising 25,000 German households. The findings suggest that quantile regression increases transparency by analyzing the entire distribution of heating energy consumption for individual building characteristics. More specifically, the analyses reveal the following exemplary insights. First, for different levels of energy efficiency, the rebound effect exhibits cyclical behavior and significantly varies across quantiles. Second, very energy-conscious and energy-wasteful households are prone to more extreme rebound effects. Third, with regards to the performance gap, heating energy demand of inefficient buildings is systematically underestimated, while it is overestimated for efficient buildings. Therefore, The remainder of this thesis is organized as follows. Section 2 presents a concise categorization of building energy models. Section 3 presents existing data-driven methods used for the pre-diction of heating energy consumption in the residential sector. Next, Section 4 elaborates on vine copula-based quantile regression. This is followed by a description of the data employed in Section 5. Section 6 presents the empirical results and Section 7 provides the practical im-plications and contribution of the quantile regression approach introduced. Finally, the conclu-sions and limitations of this thesis are discussed in Section 8.
Autor: Rochus Niemierko
EAN: 9783346020512
eBook Format: PDF
Sprache: Englisch
Produktart: eBook
Veröffentlichungsdatum: 23.09.2019
Kategorie:
Schlagworte: D-Vine Copula Energetic Retrofitting Performance Gap Quantile Regression Rebound Effect copula energieeffizienz heating energy

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870

Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr