High-Dimensional Covariance Estimation
86,99 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
Methods for estimating sparse and large covariance matrices
Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning.
Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task.
High-Dimensional Covariance Estimation features chapters on:
- Data, Sparsity, and Regularization
- Regularizing the Eigenstructure
- Banding, Tapering, and Thresholding
- Covariance Matrices
- Sparse Gaussian Graphical Models
- Multivariate Regression
The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.
MOHSEN POURAHMADI, PhD, is Professor of Statistics at Texas A&M University. He is an elected member of the International Statistical Institute, a Fellow of the American Statistical Association, and a member of the American Mathematical Society. Dr. Pourahmadi is the author of Foundations of Time Series Analysis and Prediction Theory, also published by Wiley.
Autor: | Mohsen Pourahmadi |
---|---|
EAN: | 9781118573662 |
eBook Format: | ePUB |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 28.05.2013 |
Untertitel: | With High-Dimensional Data |
Kategorie: | |
Schlagworte: | business computer science covar covariance estimation economics engineering longitudinal data analysis mathematics models multivariate multivariate analysis multivariate statistics statistical learning statistics stochastic text-mining |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870
Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr