Mastering Machine Learning with Python in Six Steps

46,99 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9781484228661

Master machine learning with Python in six steps and explore fundamental to advanced topics, all designed to make you a worthy practitioner. 

This book's approach is based on the 'Six degrees of separation' theory, which states that everyone and everything is a maximum of six steps away. Mastering Machine Learning with Python in Six Steps presents each topic in two parts: theoretical concepts and practical implementation using suitable Python packages. 

You'll learn the fundamentals of Python programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as feature dimension reduction, regression, time series forecasting and their efficient implementation in Scikit-learn are also covered. Finally, you'll explore advanced text mining techniques, neural networks and deep learning techniques, and their implementation. 

All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage.

What You'll Learn
  • Examine the fundamentals of Python programming language
  • Review machine Learning history and evolution
  • Understand machine learning system development frameworks
  • Implement supervised/unsupervised/reinforcement learning techniques with examples
  • Explore fundamental to advanced text mining techniques
  • Implement various deep learning frameworks

Who This Book Is For

Python developers or data engineers looking to expand their knowledge or career into machine learning area.

Non-Python (R, SAS, SPSS, Matlab or any other language) machine learning practitioners looking to expand their implementation skills in Python.

Novice machine learning practitioners looking to learn advanced topics, such as hyperparameter tuning, various ensemble techniques, natural language processing (NLP), deep learning, and basics of reinforcement learning.




Manohar Swamynathan is a data science practitioner and an avid programmer with over 13 years of experience in various data science related areas that include data warehousing, Business Intelligence (BI), analytical tool development, ad-hoc analysis, predictive modeling, data science product development, consulting, formulating strategy and executing analytics program. He's had a career covering life cycle of data across different domains, such as US mortgage banking, retail, insurance, and industrial IoT. He has a bachelor's degree with a specialization in physics, mathematics, computers, and a master's degree in project management. He's currently living in Bengaluru, the Silicon Valley of India, working as Staff Data Scientist with GE Digital, contributing to the next big digital industrial revolution.

Autor: Manohar Swamynathan
EAN: 9781484228661
eBook Format: PDF
Sprache: Englisch
Produktart: eBook
Veröffentlichungsdatum: 05.06.2017
Untertitel: A Practical Implementation Guide to Predictive Data Analytics Using Python
Kategorie:
Schlagworte: Deep Learning Machine Learning Model Tuning Neural Networks Python Scikit-Learn Text Mining

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870

Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr