Movie Analytics

53,49 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9783319094267
Movies will never be the same after you learn how to analyze movie data, including key data mining, text mining and social network analytics concepts. These techniques may then be used in endless other contexts. In the movie application, this topic opens a lively discussion on the current developments in big data from a data science perspective. This book is geared to applied researchers and practitioners and is meant to be practical. The reader will take a hands-on approach, running text mining and social network analyses with software packages covered in the book. These include R, SAS, Knime, Pajek and Gephi. The nitty-gritty of how to build datasets needed for the various analyses will be discussed as well. This includes how to extract suitable Twitter data and create a co-starring network from the IMDB database given memory constraints. The authors also guide the reader through an analysis of movie attendance data via a realistic dataset from France.
Autor: Dominique Haughton, Mark-David McLaughlin, Kevin Mentzer, Changan Zhang
EAN: 9783319094267
eBook Format: PDF
Sprache: Englisch
Produktart: eBook
Veröffentlichungsdatum: 05.10.2015
Untertitel: A Hollywood Introduction to Big Data
Kategorie:
Schlagworte: Big Data Data Mining Internet Movie DataBase (IMDb) Movie Analytics Oscar prediction with data Python and Gephi R Text Mining Text Mining with SAS

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870

Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr