Neuronale Netze: Theoretische Grundlagen und Anwendung in der Verkehrszeichenerkennung
36,99 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
ISBN/EAN:
9783638297721
Diplomarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1.7, Universität Bayreuth (Fakultät für Mathematik und Physik), Sprache: Deutsch, Abstract: Neuronale Netze sind ursprünglich aus der Biologie bekannt. Sie haben eine grobe Analogie zum Gehirn der Säugetiere. Künstliche Neuronale Netze sind informationsverarbeitende Systeme. Sie bestehen aus einer großen Anzahl einfacher Einheiten, den Neuronen, die sich Informationen in Form der Aktivierung der Neuronen über gerichtete, gewichtete Verbindungen zusenden. Es sind massiv parallele, lernfähige Systeme. Neuronale Netze haben die Fähigkeit, eine Aufgabe selbständig, anhand von Trainingsbeispielen, zu lernen. Überblick über die einzelnen Kapitel Kapitel 2.1 stellt die Grundlagen Neuronaler Netze dar. Dabei wird zuerst das Neuronale Netz definiert und seine Bestandteile erklärt. Anschließend werden verschiedene Netzstrukturen definiert. Kapitel 2.2 zeigt, welche Funktionen mittels Neuronaler Netze darstellbar sind. In Kapitel 3 werden verschiedene Lernverfahren für Feedforward Netze dargestellt. Dabei wird das Training Neuronaler Netze als unrestringiertes Optimierungsproblem dargestellt. In den Lernverfahren wird auf die Theorie und teilweise auch auf die Konvergenz eingegangen. Dabei werden auch Vor- und Nachteile der Verfahren angesprochen. In Kapitel 4 werden verschiedene rekurrente Neuronale Netze dargestellt. Anschließend werden verschiedene Lernverfahren für diese Netze erläutert, die sich aus den Verfahren für Feedforward Netze ableiten lassen. Außerdem wird in Kapitel 4.6 die Stabilität rekurrenter Neuronaler Netze untersucht. In Kapitel 4.7 wird die Boltzmann Maschine als eine Anwendung des Hopfield-Netzes mit einem, auf der Idee des Simulated Annealing beruhenden, Lernverfahren erläutert. Kapitel 5 stellt Verfahren zur Minimierung von Neuronalen Netzen vor. Kapitel 6 zeigt eine Anwendung Neuronaler Netze in der Verkehrszeichenerkennung. Es wird erklärt, wie die Bilder bearbeitet und die Trainingsmuster erstellt wurden. Dann wurden die Neuronalen Netze mit Hilfe des Stuttgarter Neuronale Netze Simulators erstellt, trainiert und anhand von Testbildern getestet. Anschließend wurde gezeigt, wie man ein vorhandenes Neuronales Netz erweitern kann.
Autor: | Andreas Friedrich |
---|---|
EAN: | 9783638297721 |
eBook Format: | |
Sprache: | Deutsch |
Produktart: | eBook |
Veröffentlichungsdatum: | 04.08.2004 |
Kategorie: | |
Schlagworte: | Anwendung Grundlagen Netze Neuronale Theoretische Verkehrszeichenerkennung |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870
Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr