Schriftlich/graphische Beweise des Euler Satzes
15,99 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
ISBN/EAN:
9783668754003
Studienarbeit aus dem Jahr 2012 im Fachbereich Mathematik - Geometrie, Note: 2.0, FernUniversität Hagen (Fachbereich Mathematik), Veranstaltung: Arbeit im Rahmen des MSc Mathematik - Methoden und Modelle (Abschluss 1.3), Sprache: Deutsch, Abstract: Mit der Euler-Formel wird der Abstand der Mittelpunkte von Umkreis und Inkreis eines Dreiecks berechnet. Das Besondere an dieser Formel ist, dass sie nicht etwa die Koordinaten der Eckpunkte oder die Seitenlängen des Dreiecks verwendet, sondern Größen, mit denen Dreiecke normalerweise nicht beschrieben werden: die Radien von Umkreis und Inkreis. Die Euler-Formel wird in gängigen Geometriebüchern nicht bewiesen. Nathan Bowler's Artikel 'How anyone can prove Euler's Formula' skizziert dagegen gleich vier verschiedene Beweise. Gegenstand dieser Arbeit sind die beiden ersten Beweise hierin: Klassischer und Inversions-Beweis der Euler-Formel. Bowler setzt nicht nur Vieles voraus, sondern verwendet auch eine sehr kondensierte Darstellung. Daher werden hier in der folgenden Vorbereitung die nötigen Sätze hergeleitet bzw. bewiesen, bevor die eigentlichen Beweise der Euler-Formel entwickelt werden.
Autor: | Rainer Stickdorn |
---|---|
EAN: | 9783668754003 |
eBook Format: | |
Sprache: | Deutsch |
Produktart: | eBook |
Veröffentlichungsdatum: | 18.07.2018 |
Untertitel: | Beweise zum Euler-Satz in der Geometrie der Ebene |
Kategorie: | |
Schlagworte: | Beweise zu Euler-Satz Dreiecke Graphik mit R R-Programmierung ebene Geometrie kreise |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870
Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr