Simulationsmethoden zur Berechnung des 'Value at Risk'. Historische Simulation und 'Monte-Carlo-Simulation'
15,99 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
ISBN/EAN:
9783638286848
Studienarbeit aus dem Jahr 2002 im Fachbereich Mathematik - Statistik, Note: 1,0, Universität zu Köln (Wirtschaftswissenschaftliche Fakultät), Sprache: Deutsch, Abstract: Der Wert eines Portfolios von Finanzanlagen wird durch verschiedene Risikofaktoren beeinflusst. Diese Risikofaktoren sind diverse Marktpreise wie Aktienkurse, Zinssätze, Wechselkurse etc. An den Wertänderungen des Portfolios, das heißt Gewinnen oder Verlusten, kann die Abhängigkeit von den Risiken gemessen werden. Ein verbreitetes Maß zur Messung der Marktrisiken ist der 'Value at Risk' (VaR). Kurz gefasst misst VaR den größtmöglichen Verlust aus einem Portfolio über eine Zeitperiode mit einer gegebenen Wahrscheinlichkeit. VaR ist ein monetäres Maß, das die verschiedenen Marktrisiken in eine Kennzahl komprimiert. Deswegen eignet sich der VaR dafür, den Informationsbedarf der Unternehmensleitung, der Aktionäre und Investoren zu decken. Der VaR wird aus einem Quantil einer Verteilung von Portfolio-Wertänderungen berechnet. Wenn die genaue Verteilung nicht bekannt ist, wird sie durch eine Häufigkeitsverteilung der simulierten Wertänderungen approximiert. Damit befassen sich Simulationsmodelle: historische Simulation, bei der die Wertänderungen aus den historischen Daten abgelesen werden, und Monte-Carlo-Simulation, die das Verhalten der Risikofaktoren durch die Erzeugung der zufälligen Preispfaden an Hand eines stochastischen Modells simuliert. Nach einer kurzen Definition und Beschreibung der Modelle zur Bestimmung des VaR werden in dieser Arbeit die Simulationsmodelle genauer untersucht. Es werden zwei Varianten der historischen Simulation, der Portfolio- und der Faktoransatz dargestellt und an einem Beispiel verdeutlicht. Weiter wird die Monte-Carlo-Simulation allgemein und an einem theoretischen und empirischen Beispiel der geometrischen Brownschen Bewegung betrachtet. Dabei werden auch Methoden der Generierung der Zufallszahlen dargestellt. Außerdem wird in der Arbeit auf die Vor- und Nachteile der beiden Modelle eingegangen.
Autor: | Natalie Kulenko |
---|---|
EAN: | 9783638286848 |
eBook Format: | ePUB/PDF |
Sprache: | Deutsch |
Produktart: | eBook |
Veröffentlichungsdatum: | 29.06.2004 |
Kategorie: | |
Schlagworte: | Berechnung Historische Monte-Carlo-Simulation Risk Simulation Simulationsmethoden Value |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870
Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr