Spatial Statistics and Spatio-Temporal Data
84,99 €*
Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.
After an extensive introduction to spatial methodology, the book details the effects of common covariance assumptions and addresses methods to assess the appropriateness of such assumptions for various data structures.
Key features:
- An extensive introduction to spatial methodology including a survey of spatial covariance functions and their use in spatial prediction (kriging) is given.
- Explores methodology for assessing the appropriateness of assumptions on covariance functions in the spatial, spatio-temporal, multivariate spatial, and point pattern settings.
- Provides illustrations of all methods based on data and simulation experiments to demonstrate all methodology and guide to proper usage of all methods.
- Presents a brief survey of spatial and spatio-temporal models, highlighting the Gaussian case and the binary data setting, along with the different methodologies for estimation and model fitting for these two data structures.
- Discusses models that allow for anisotropic and nonseparable behaviour in covariance functions in the spatial, spatio-temporal and multivariate settings.
- Gives an introduction to point pattern models, including testing for randomness, and fitting regular and clustered point patterns. The importance and assessment of isotropy of point patterns is detailed.
Statisticians, researchers, and data analysts working with spatial and space-time data will benefit from this book as well as will graduate students with a background in basic statistics following courses in engineering, quantitative ecology or atmospheric science.
Michael Sherman, Professor of Statistics, Texas A&M University
Michael Sherman has done extensive research on re-sampling methods for temporally or spatially dependent data and spatial statistics. He has published various papers in JASA, Biometrics and JRSS-B. In 2000 he created a course in Spatial Statistics at Texas A&M University and has given over 35 invited presentations at University seminars, ASA meetings and special topic meetings.
Autor: | Michael Sherman |
---|---|
EAN: | 9780470974407 |
eBook Format: | |
Sprache: | Englisch |
Produktart: | eBook |
Veröffentlichungsdatum: | 12.10.2010 |
Untertitel: | Covariance Functions and Directional Properties |
Kategorie: | |
Schlagworte: | Kriging Spatial Statistics and Spatio-Temporal Data coKriging geometric anisotropy geostatistics isotropy optimal prediction space-time data sets spatial models spatial point patterns spatial randomn statistical inference variogram models |
Anmelden
Möchten Sie lieber vor Ort einkaufen?
Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.
Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870
Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr