Time-Frequency Analysis of Electroencephalograph (EEG) for Feature Optimization

39,99 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9783346584380
Document from the year 2017 in the subject Medicine - Biomedical Engineering, grade: 3.0, , language: English, abstract: Electroencephalograph (EEG) has been widely used for BCI applications due to its non-invasiveness, ease of implementation, and cost-efficiency. The collected EEG signal is non-stationary and has task-related information buried in the frequency and temporal domains. In this book, we focused on developing time-frequency decomposition methods for improving the feature extraction module in BCI systems. The obtained features are then optimized by identifying subject-specific reactive band and employing evolutionary algorithm-based methods for optimizing the obtained features, improving the BCI systems' performance. A signal model named as band-limited multiple Fourier linear combiner (BMFLC) is employed to model the non-stationarity in the EEG signal for feature extraction. The non-stationary amplitude oscillation is presented as adaptive weights in the model and estimated with various adaptive filters such as least-mean square (LMS), Kalman filter (KF), or Kalman Smoother (KS). The estimated coefficients serve as features for classification. Our results suggest that the BMFLC-LMS, BMFLC-KF, and BMFLC-KS are all sufficient in modeling EEG signal in the band with average estimation accuracies of 93%, 99%, and 98%, respectively. We modelled motion-induced EEG signal in frequency domain. We found that most subjects present a subject- specific reactive band during motion tasks. We then constructed features for a classifier that used only the frequency information in the subject-specific reactive band. As a result, the classification accuracy of the BCI system is improved compared to the system which uses the complete band information. Features obtained from multiple EEG channels need to be optimized to enhance the performance of the BCI systems. Essentially, two problems need to be resolved: 1) volume conduction; 2) dimensionality. The volume conduction can be mitigated if spatial filter is employed, and the dimension of the feature vector can be reduced if a feature selection procedure is adopted. An evolutionary algorithm (EA) based approach was developed to estimate spatial filter and reduce feature dimension simultaneously. We show that the BMFLC-KF combined with the evolutionary al- algorithm has the highest classification accuracy compared to other BMFLC-KF based approaches and is superior to the traditionally employed band-power methods.
Autor: Kalyana Veluvolu, Yubo Wang
EAN: 9783346584380
eBook Format: PDF
Sprache: Englisch
Produktart: eBook
Veröffentlichungsdatum: 02.02.2022
Kategorie:
Schlagworte: analysis electroencephalograph feature optimization time-frequency

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870

Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr