Zwei Anwendungen der Sattelpunktmethode in der Finanzmathematik

29,99 €*

Nach dem Kauf zum Download bereit Ein Downloadlink ist wenige Minuten nach dem Kauf im eigenen Benutzerprofil verfügbar.

ISBN/EAN: 9783640886692
Masterarbeit aus dem Jahr 2011 im Fachbereich VWL - Finanzwissenschaft, Note: 1, Technische Universität Wien (Wirtschaftsmathematik), Veranstaltung: Finanz- und Versicherungsmathematik, Sprache: Deutsch, Abstract: Die Arbeit beschäftigt sich mit der Methode der Sattelpunkt-Approximation, die dazu verwendet wird die Dichte (und Tail-Wahrscheinlichkeit) einer Verteilung, die nicht in geschlossener Form gegeben ist, oder eine sehr komplizierte Darstellung hat, approximativ berechnen zu können. Diese Methode wird zuerst zur Berechnung von europäischen Put-Optionspreisen, unter Verwendung von Jump-Diffusion Prozessen, Normal-Invers-Gauß Prozessen und Varianz-Gamma Prozessen als Preisprozesse, verwendet. Anhand von Beispielen wird gezeigt, dass diese Methode brauchbare Approximationslösungen für die Optionspreise liefert. Anschließend wird eine zweite finanzmathematische Anwendung der Methode der Sattelpunkt-Approximation aufgezeigt, nämlich die Bewertung von Collateralized Debt Obligations, wo man sich anhand von vergleichenden Beispielen ebenfalls von der Güte der Sattelpunkt-Approximation überzeugen kann.
Autor: Florian Mair
EAN: 9783640886692
eBook Format: PDF
Sprache: Deutsch
Produktart: eBook
Veröffentlichungsdatum: 07.04.2011
Kategorie:
Schlagworte: anwendungen finanzmathematik sattelpunktmethode zwei

0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.


shop display image

Möchten Sie lieber vor Ort einkaufen?

Haben Sie weiterführende Fragen zu diesem Buch oder anderen Produkten? Oder möchten Sie einfach doch lieber in der Buchhandlung stöbern? Wir sind gern persönlich für Sie da und beraten Sie auch telefonisch.

Buchhandlung Nettesheim GmbH
Hauptstraße 17
42349 Wuppertal
Telefon: 0202/472870

Mo – Fr09:30 – 18:00 UhrSa09:00 – 13:00 Uhr